• Title/Summary/Keyword: AlN films

Search Result 496, Processing Time 0.027 seconds

Characteristics of PECVD-W thin films deposited on $Si_3N_4$ ($Si_3N_4$상에 PECVD법으로 형성한 텅스텐 박막의 특성)

  • 이찬용;배성찬;최시영
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.2
    • /
    • pp.141-149
    • /
    • 1998
  • The W thin films were deposited on Si3N4 by a PECVD technique. The effects of substrate temperature and gas flow ratio on the properties of the W films were investigated. The deposition of W films were limited by surface reaction at the temperature range of 150>~$250^{\circ}C$, W films had the deposition rate of 150~530 $\AA$/min and stress of 0.85~$14.35\times10 ^9 \textrm {dynes/cm}^2}$ at various substrate temperatures and $SiH_4/WF_6$ flow ratios. $SiH_4/WF_6$ flow ratio affected the deposition rate and stress of the W films, expecially, excessive flow of SiH4 abruptly changed the structure, chemical bonding, and stress of the W films. Among the deposited W films on TiN, Ti, Mo, NiCr and Al adhesion layer, the one on the Al had the best adhesion property.

  • PDF

Effects of Sputtering Conditions of TiW Under Bump Metallurgy on Adhesion Strength of Au Bump Formed on Al and SiN Films (Al 및 SiN 박막 위에 형성된 TiW Under Bump Metallurgy의 스퍼터링 조건에 따른 Au Bump의 접착력 특성)

  • Jo, Yang-Geun;Lee, Sang-Hee;Kim, Ji-Mook;Kim, Hyun-Sik;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.3
    • /
    • pp.19-23
    • /
    • 2015
  • In this study, two types of Au/TiW bump samples were fabricated by the electroplating process onto Al/Si and SiN/Si wafers for the COG (Chip On Glass) packaging. TiW was used as the UBM (Under Bump Metallurgy) material of the Au bump and it was deposited by a sputtering method under the sputtering powers ranges from 500 to 5000 Watt. We investigated the delamination phenomenas for the prepared samples as a function of the input sputtering powers. The stable interfacial adhesion condition was found to be 1500 Watt in sputtering power. In addition, the SAICAS (Surface And Interfacial Cutting Analysis System) measurement was used to find the adhesion strength of Au bumps for the prepared samples. TiW UBM films were deposited at the 1500 Watt sputtering power. As a results, there was a similar adhesion strengths between TiW/Au interfacial films on Al/Si and SiN/Si wafers. However, the adhesion strength of TiW UBM sputtering films on Al and SiN under films were 2.2 times differences, indicating 0.475 kN/m for Al/Si wafer and 0.093 kN/m for SiN/Si wafer, respectively.

Effect of Al Doping Concentration on Resistance Switching Behavior of Sputtered Al-doped MgOx Films

  • Lee, Gyu-Min;Kim, Jong-Gi;Park, Seong-Hun;Son, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.307-307
    • /
    • 2012
  • In this study, we investigated that the resistance switching characteristics of Al-doped MgOx films with increasing Al doping concentration and increasing film thickness. The Al-doped MgOx based ReRAM devices with a TiN/Al-doped MgOx/Pt/Ti/SiO2 were fabricated on Si substrates. The 5 nm, 10 nm, and 15 nm thick Al-doped MgOx films were deposited by reactive dc magnetron co-sputtering at $300^{\circ}C$ and oxygen partial ratio of 60% (Ar: 16 sccm, O2: 24 sccm). Micro-structure of Al-doped MgOx films and atomic concentration were investigated by XRD and XPS, respectively. The Al-doped MgOx films showed set/reset resistance switching behavior at various Al doping concentrations. The process voltage of forming/set is decreased and whereas the initial current level is increased with decreasing thickness of Al-doped MgOx films. Besides, the initial current of Al-doped MgOx films is increased with increasing Al doping concentration in MgOx films. The change of resistance switching behavior depending on doping concentration was discussed in terms of concentration of non-lattice oxygen of Al-doped MgOx.

  • PDF

Effect of Si on the Microstructure and Mechanical Properties of Ti-Al-Si-C-N Coatings (Si 함량에 따른 Ti-Al-Si-C-N 코팅막의 미세구조와 기계적 특성의 변화에 관한 연구)

  • Hong, Young-Su;Kwon, Se-Hun;Kim, Kwang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.2
    • /
    • pp.73-78
    • /
    • 2009
  • Quinary Ti-Al-Si-C-N films were successfully synthesized on SUS 304 substrates and Si wafers by a hybrid coating system combining an arc ion plating technique and a DC reactive magnetron sputtering technique. In this work, the effect of Si content on the microstructure and mechanical properties of Ti-Al-C-N films were systematically investigated. It was revealed that the microstructure of Ti-Al-Si-C-N coatings changed from a columnar to a nano-composite by the Si addition. Due to the nanocomposite microstructure of Ti-Al-Si-C-N coatings, the microhardness of The Ti-Al-Si-C-N coatings significantly increased up to 56 GPa. In addition the average friction coefficients of Ti-Al-Si-C-N coatings were remarkably decreased with Si addition. Therefore, Ti-Al-Si-C-N coatings can be applicable as next-generation hard-coating materials due to their improved hybrid mechanical properties.

Single Crystal Growing of Gallium Nitride Films on (0001), (10${\bar{1}}$2) and(11${\bar{2}}$0) Sappire ((0001), (10${\bar{1}}$2)와 (11${\bar{2}}$0) Sapphire 기판에서 Gallium Nitribe 단결정 박막의 성장)

  • 황진수;알렉산
    • Korean Journal of Crystallography
    • /
    • v.5 no.1
    • /
    • pp.24-32
    • /
    • 1994
  • The study of (0001), (1120) and (1011) GAN epitaxy films grown on the (0001),(1012) and (1120) α-Al2O3 substrates have been investigated using the haliar vapor phaes epitaxy(HVPE) method in Ga/HCI/NH3/He system. XRD, RHEED and SEM are used for the study of the films struction and surface morphology. Chemical composition of the film surface is estimsted by XPS. The following orientation relationships are observed; (0001) GaN /(0001) Al2O3 (1120) GaN/ (1012) Al2O3 and (0001) and (1011) GaN/ (1120) Al2O3 in accordance with growth conditions. The (0001) GaN films grown on(0001) and (1120) a-Al2O3 substrates at higer temperature(1050℃) have shown two dimensional grownth mechanism. Form SEM and RHEED, the smoother surface morphology and better structure are observed for the (1011) GaN films grown on (1120) sapphire at higer temperature.

  • PDF

The etching properties of $Al_2O_3$ thin films in $N_2/Cl_2/BCl_3$ and Ar/$Cl_2/BCl_3$ gas chemistry (유도결합 플라즈마를 이용한 $Al_2O_3$ 식각 특성)

  • Koo, Seong-Mo;Kim, Dong-Pyo;Kim, Kyoung-Tae;Kim, Chang-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.72-74
    • /
    • 2004
  • In this study, we used a inductively coupled plasma (ICP) source for etching $Al_2O_3$ thin films because of its high plasma density, low process pressure and easy control bias power. $Al_2O_3$ thin films were etched using $Cl_2/BCl_3$, $N_2/Cl_2/BCl_3$, and Ar/$Cl_2/BCl_3$ plasma. The experiments were carried out measuring the etch rates and the selectivities of $Al_2O_3$ to $SiO_2$ as a function of gas mixing ratio, rf power, and chamber pressure. When $Cl_2$ 50% was added to $Cl_2/BCl_3$ plasma, the etch rate of the $Al_2O_3$ films was 118 nm/min. We also investigated the effect of gas addition. In case of $N_2$ addition, the etch rate of the $Al_2O_3$ films decreased while $N_2$ was added into $Cl_2/BCl_3$ plasma. However, the etch rate increased slightly as Ar added into $Cl_2/BCl_3$ plasma, and then further increase of Ar decreased the etch rate. The maximum etch rate was 130 nm/min at Ar 20% in $Cl_2/BCl_3$ plasma, and the highest etch selectivity was 0.81 in $N_2$ 20% in $Cl_2/BCl_3$ plasma. And, we obtained the results that the etch rate increases as rf power increases and chamber pressure decreases. The characteristics of the plasmas were estimated using optical emission spectroscopy (OES).

  • PDF

Characteristics of SAW humidity sensor using nanocrystalline ZnO films

  • Hong, Hoang-Si;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.337-341
    • /
    • 2010
  • In this work, the nanocrystalline ZnO/polycrystalline(poly) aluminum nitride(AlN)/ Si-layered structure was fabricated for humidity sensor applications based on surface acoustic wave(SAW). The ZnO film was used as a sensitive material layer. The ZnO and AlN(0002) were deposited by a sol-gel process and a pulse reactive magnetron sputtering, respectively. The ZnO sensitive films coated on AlN have a hexagonal wurtzite structure after the thin films annealed at $400^{\circ}C$, $500^{\circ}C$ and $600^{\circ}C$. The surface of the film exhibits sponginess and a nanometer particle size(below 50 nm). The largest shift in the frequency response was at approximately 200 kHz(the relative humidity: 10 %~90 %) for the structure annealed at $400^{\circ}C$. The effect of the change in the environmental temperature on the frequency response of the SAW humidity sensor was also investigated.

Microstructural and Mechanical Characteristics of TiZrAlN Nanocomposite Thin Films by CFUBMS (CFUBMS을 이용한 TiZrAlN 나노복합 박막의 미세 구조와 기계적 특성)

  • Kim, Youn-J.;Lee, Ho-Y.;Kim, Yong-M.;Kim, Kab-S.;Han, Jeon-G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Quaternary TiZrAlN nanocomposite thin films were synthesized by Closed-Field Unbalanced Magnetron Sputtering (CFUBMS), and their microstructure and mechanical characteristics were examined. The grain refinement of the TiZrAlN nanocomposite thin films was controlled by adjusting the $N_2$ partial pressure. The hardness of the film varied with the $N_2$ partial pressure and the maximum value was obtained approximately 47 GPa. It was also confirmed that there is a critical value of the grain size($d_c$) to need maximum hardness.

Effect of Si Content on the Phase Formation Behavior and Surface Properties of the Cr-Si-Al-N Coatings (Cr-Si-Al-N 코팅의 상형성 및 표면 물성에 미치는 Si 함량의 영향)

  • Choi, Seon-A;Kim, Hyung-Sun;Kim, Seong-Won;Lee, Sungmin;Kim, Hyung-Tae;Oh, Yoon-Suk
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.580-586
    • /
    • 2016
  • Cr-Si-Al-N coating with different Si content were deposited by hybrid physical vapor deposition (PVD) method consisting of unbalanced magnetron (UBM) sputtering and arc ion plating (AIP). The deposition temperature was $300^{\circ}C$, and the gas ratio of $Ar/N_2$ were 9:1. The CrSi alloy and aluminum targets used for arc ion plating and sputtering process, respectively. Si content of the CrSi alloy targets were varied with 1 at%, 5 at%, and 10 at%. The phase analysis, composition and microstructural analysis performed using x-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) including energy dispersive spectroscopy (EDS), respectively. All of the coatings grown with textured CrN phase (200) plane. The thickness of the Cr-Si-Al-N films were measured about $2{\mu}m$. The friction coefficient and removal rate of films were measured by a ball-on-disk test under 20N load. The friction coefficient of all samples were 0.6 ~ 0.8. Among all of the samples, the removal rate of CrSiAlN (10 at% Si) film shows the lowest values, $4.827{\times}10^{-12}mm^3/Nm$. As increasing of Si contents of the CrSiAlN coatings, the hardness and elastic modulus of CrSiAlN coatings were increased. The morphology and composition of wear track of the films was examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy, respectively. The surface energy of the films were obtained by measuring of contact angle of water drop. Among all of the samples, the CrSiAlN (10 at% Si) films shows the highest value of the surface energy, 41 N/m.

Effects of AlN buffer layer on optical properties of epitaxial layer structure deposited on patterned sapphire substrate (패턴화된 사파이어 기판 위에 증착된 AlN 버퍼층 박막의 에피층 구조의 광학적 특성에 대한 영향)

  • Park, Kyoung-Wook;Yun, Young-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • In this research, 50 nm thick AlN thin films were deposited on the patterned sapphire (0001) substrate by using HVPE (Hydride Vapor Phase Epitaxy) system and then epitaxial layer structure was grown by MOCVD (metal organic chemical vapor deposition). The surface morphology of the AlN buffer layer film was observed by SEM (scanning electron microscopy) and AFM (atomic force microscope), and then the crystal structure of GaN films of the epitaxial layer structure was investigated by HR-XRC (high resolution X-ray rocking curve). The XRD peak intensity of GaN thin film of epitaxial layer structure deposited on AlN buffer layer film and sapphire substrate was rather higher in case of that on PSS than normal sapphire substrate. In AFM surface image, the epitaxial layer structure formed on AlN buffer layer showed rather low pit density and less defect density. In the optical output power, the epitaxial layer structure formed on AlN buffer layer showed very high intensity compared to that of the epitaxial layer structure without AlN thin film.