• Title/Summary/Keyword: AlN film

Search Result 567, Processing Time 0.027 seconds

Antifuse with Ti-rich barium titanate film and silicon oxide film (과잉 Ti 성분의 티탄산 바륨과 실리콘 산화막으로 구성된 안티퓨즈)

  • 이재성;이용현
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.7
    • /
    • pp.72-78
    • /
    • 1998
  • This paper is focused on the fabrication of reliable novel antifuse, which could operate at low voltage along with the improvement in OFF and ON-state properties. The fabricated antifuse consists of Al/BaTi$_{2}$O$_{3}$/SiO$_{2}$/TiW-silicide structure. Through the systematic analyses for bottom metal and the intermetallic insulator, material and electri cproperties were investiaged. TiW-silicide as the bottom electrode had smooth surface with average roughness of 11.angs. at 10X10.mu.m$^{2}$ and was bing kept as-deposited SiO$_{2}$ film stable. Amorphous BaTi$_{2}$O$_{3}$ film as the another insulator was chosen because of its low breakdown strength (2.5MV/cm). breakdown voltage of antifuse is remarkably reduced by using BaTi$_{2}$O$_{3}$ film, and leakage current of that maintained low level due to the SiO$_{2}$ film. Low ON-resistance (46.ohm./.mu.m$^{2}$) and low programming voltage(9.1V) can be obtained in theses antifuses with 220.angs. double insulator layer and 19.6X10$^{-6}$ cm$^{2}$ area, while keeping sufficient OFF-state reliability (less than 1nA).

  • PDF

Thickness dependence of grain growth orientation in MgB2 films fabricated by hybrid physical-chemical vapor deposition

  • Ranot, Mahipal;Kang, W.N.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.2
    • /
    • pp.9-11
    • /
    • 2013
  • We have investigated the effect of thickness of the MgB2 film on the grain growth direction as well as on their superconducting properties. $MgB_2$ films of various thicknesses were fabricated on c-cut $Al_2O_3$ substrates at a temperature of $540^{\circ}C$ by using hybrid physical-chemical vapor deposition (HPCVD) technique. The superconducting transition temperature ($T_c$) was found to increase with increase in the thickness of the $MgB_2$ film. X-ray diffraction analysis revealed that the orientation of grains changed from c-axis to a-axis upon increasing the thickness of the $MgB_2$ film from 0.6 to 2.0 ${\mu}m$. $MgB_2$ grains of various orientations were observed in the microstructures of the films examined by scanning electron microscopy. It is observed that at high magnetic fields the 2.0-${\mu}m$-thick film exhibit considerably larger critical current density ($J_c$) as compared to 0.6-${\mu}m$-thick film. The results are discussed in terms of an intrinsic-pinning in $MgB_2$ similarly as intrinsic-pinning occurring in high-Tc cuprate superconductors with layered structure.

Variations in Tunnel Electroresistance for Ferroelectric Tunnel Junctions Using Atomic Layer Deposited Al doped HfO2 Thin Films (하부전극 산소 열처리를 통한 강유전체 터널접합 구조 메모리 소자의 전기저항 변화 특성 분석)

  • Bae, Soo Hyun;Yoon, So-Jung;Min, Dae-Hong;Yoon, Sung-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.433-438
    • /
    • 2020
  • To enhance the tunneling electroresistance (TER) ratio of a ferroelectric tunnel junction (FTJ) device using Al-doped HfO2 thin films, a thin insulating layer was prepared on a TiN bottom electrode, for which TiN was preliminarily treated at various temperatures in O2 ambient. The composition and thickness of the inserted insulating layer were optimized at 600℃ and 50 Torr, and the FTJ showed a high TER ratio of 430. During the heat treatments, a titanium oxide layer formed on the surface of TiN, that suppressed oxygen vacancy generation in the ferroelectric thin film. It was found that the fabricated FTJ device exhibits two distinct resistance states with higher tunneling currents by properly heat-treating the TiN bottom electrode of the HfO2-based FTJ devices in O2 ambient.

The Effect of Passivation Film with Inorganic/Epoxy Layers on Life Time Characteristics of OLED Device (OLED 내구성에 미치는 무기/에폭시층 보호막의 영향)

  • Lim, Jung-A;Ju, Sung-Hoo;Yang, Jae-Woong
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.6
    • /
    • pp.287-293
    • /
    • 2009
  • The passivation films with epoxy layer on LiF, $SiN_x$ and LiF/$SiN_x$ inorganic layer were fabricated on OLED to protect device from the direct damage of $O_2$ and $H_2O$ and to apply for a buffer layer between OLED device and passivation multi-layer with organic/inorganic hybrid structure as to diminish the thermal stress and expansion. Red OLED doped with 1 vol.% Rubrene in $Alq_3$ was used as a basic device. The device structure was multi-layer of ITO(150 nm) / ELM200_HIL(50 nm) / ELM002_HTL(30 nm) / $Alq_3$: 1 vol.% Rubrene(30 nm) / $Alq_3$(30 nm) / LiF(0.7 nm) / Al(100 nm). LiF/epoxy applied as a protective layer didn't contribute to the improvement of life time. While in case of $SiN_x$/epoxy, damage was done in the passivation process because of difference in heat expansion between films which could occur during the formation of epoxy film. Using LiF/$SiN_x$/epoxy improved lifetime significantly without suffering damage in the process of forming films, therefore, the best structure of passivation film with inorganic/epoxy layers was LiF/$SiN_x$/E1.

Influence of Source/Drain Electrodes on the Properties of Zinc Tin Oxide Transparent Thin Film Transistors (Zinc Tin Oxide 투명 박막트랜지스터의 특성에 미치는 소스/드레인 전극의 영향)

  • Ma, Tae Young;Cho, Mu Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.7
    • /
    • pp.433-438
    • /
    • 2015
  • Zinc tin oxide transparent thin film transistors (ZTO TTFTs) were fabricated by using $n^+$ Si wafers as gate electrodes. Indium (In), aluminum (Al), indium tin oxide (ITO), silver (Ag), and gold (Au) were employed for source and drain electrodes, and the mobility and the threshold voltage of ZTO TTFTs were observed as a function of electrode. The ZTO TTFTs adopting In as electrodes showed the highest mobility and the lowest threshold voltage. It was shown that Ag and Au are not suitable for the electrodes of ZTO TTFTs. As the results of this study, it is considered that the interface properties of electrode/ZTO are more influential in the properties of ZTO TTFTs than the conductivity of electrode.

Excimer laser crystallization of sputtered a-Si films on plastic substrates

  • Cho, Hans-S;Jung, Ji-Sim;Kim, Do-Young;Park, Young-Soo;Park, Kyung-Bae;Kwon, Jang-Yeon;Noguchi, Takashi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.962-965
    • /
    • 2004
  • In this work, thin films of amorphous silicon (a-Si) were formed on plastic substrates by sputtering deposition and crystallized using excimer laser irradiation. As the entire process is conducted at room temperature, and the laser irradiation-induced heating is confined to the thin film, the plastic substrate is not subjected to thermal stresses. The microstructure resulting from the laser irradiation was dependent on the laser irradiation energy density and the composition of the underlying buffer layers. It was found that a layer of AlN deposited as a buffer between the plastic and the a-Si film increased the endurance of the a-Si film under laser irradiation, and resulted in polycrystalline Si grains up to 100nm in diameter.

  • PDF

Structure, Optical and Electrical Properties of AI-doped ZnO Thin Film Grown in Hydrogen-Incorporated Sputtering Gas

  • Kim, Kyoo-Ho;Wibowo, Rachmat Adhi;Munir, Badrul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.154-159
    • /
    • 2005
  • Low RF power density was used for preparing transparent conducting AI-doped ZnO (AZO) thin films by RF Magnetron Sputtering on Corning 1737 glass. The dependence of films' structural, optical and electrical properties on sputtering gas, film's thickness and substrate temperature were investigated. Low percent of incorporated H2 in Ar sputtering gas has proven to reduce film's resistivity and sheet resistance as low as $4.1\times10^{-3}{\Omega}.cm$. It also formed new preferred peaks orientation of (101) and (100) which indicated that the c-axis of AZO films was parallel to the substrate. From UN-VIS-NIR Spectrophotometer analysis, it further showed high optical transmittance at about $\~ 90\%$ at visible light spectra (400-700nm).

  • PDF

Thickness Effects of Active Layers on the Properties of Zinc Tin Oxide Transparent Thin Film Transistors (Zinc Tin Oxide 투명 박막트랜지스터의 특성에 미치는 활성층 두께의 영향)

  • Ma, Tae Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.7
    • /
    • pp.433-437
    • /
    • 2014
  • Transparent thin film transistors were fabricated on $n^+$-Si wafers coated by $Al_2O_3/SiO_2$. Zinc tin oxide (ZTO) films deposited by rf magnetron sputtering were employed for active layers. The mobility (${\mu}s$), threshold voltage ($V_T$), and subthreshold swing (SS) dependances on ZTO thickness were analyzed. The $V_T$ decreased with increasing ZTO thickness. The ${\mu}s$ raised from $5.1cm^2/Vsec$ to $27.0cm^2/Vsec$ by increasing ZTO thickness from 7 nm to 12 nm, and then decreased with ZTO thickness above 12 nm. The SS was proportional to ZTO thickness.

SPIN POLARIZED PHOTOEMISSION AND MAGNETIC CIRCULAY DICHROISM STUDY OF FeAl THIN FILMS

  • Kim, K.W.;Kudryavtsev, Y.V.;Chang, G.S.;Whang, C.N.;Lee, Y.P.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.53-58
    • /
    • 1997
  • It is well known that the equiatomic FeAl alloy crystallizes in a paramagnetic CsCl structure and is very stable in a wide temperature range owing to a significant charge transfer from Al to Fe. A presence of structural defects normally enhances the magnetic and magneto-optical properties of this alloy. In this study spin-resolved photoemission and magnetic circular dichroism (MCD) were carried out on both ordered and disordered $Fe_{0.52}Al_{0.48}$ alloy films. The disordered state in the alloy films was obtained by a vapor quenching deposition on cooled substrates. It is shown that the order-disorder transition in the Fe0.52Al0.48 alloy films leads to a significant change in the spin polarization. Form the MCD results the orbital and spin magnetic moments of the constituent atoms are obtained. According to the sum rule the spin and orbital magnetic moments of Fe in the disordered FeAl film are $\mu\frac{SR}{spin}=0.8\mu_B$ and $\mu\frac{SR}{orb}=0.14\mu_B$ respectively. The spin magnetic moment is also evaluated to be $\mu\frac{BR}{spin}=0.77\mu_B$ by the branching ration method employing a photon polarization of 90%.

  • PDF

A study on the space charge polarization and electrical conduction in the dielectrics (유전체의 공간전하분극과 전기전도에 관한 연구)

  • 김영근;윤성도;이경섭;국상훈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1991.10a
    • /
    • pp.79-82
    • /
    • 1991
  • In this paper we examined, by using the PET film with thickness of 16-350$\mu\textrm{m}$, space charge focused on TSC peak at the slightly higher temperature than transition temperture of the glass. In the result we found that charge quantity, leaking current and absorbing current at TSC peak were rarely dependant its thickness at the Al foil contact electrde. In the case of Al evaporated electrode, the absorbing current was rarely dependent its thickness but TSC charge quantity at C-peak was increased directly proportional to its thickness and leaking current was decayed inversely proportional to its thickness. Also current-volteag characteristics showed sublinerar property under ohmic area at the Al evaporated electrode.