• Title/Summary/Keyword: AlCu 금속막 공정

Search Result 6, Processing Time 0.022 seconds

Copper, aluminum based metallization for display applications (표시소자 응용을 위한 copper, aluminum 박막의 성장과 특성)

  • 김형택;배선기
    • Electrical & Electronic Materials
    • /
    • v.8 no.3
    • /
    • pp.340-351
    • /
    • 1995
  • Electrical, physical and optical properties of Aluminum(Al), Copper(Cu) thin films were investigated in order to establish the optimum sputtering parameters in Liquid Crystal Display (LCD) panel applications. DC-magnetron sputtered film on coming 7059 samples were fabricated with variations of deposition power densities, deposition pressures and substrate temperatures. Low resistivity films(AI;2.80 .mu..ohm.-cm, Cu:1.84 .mu..ohm-cm),which lower than the reported values, were obtained under sputtering parameters of power density(250W), substrate temperature(450-530.deg. C) and 5*10$\^$-3/ Torr deposition pressure. Expected columnar growth and stable grain growth of both films was observed through the Scanning Electron Microscope(SEM) micrographs. Dependency of the applicable defect-free film density upon depositon power and temperature was also characterized. Not too noticable variations in X-ray diffraction patterns were remarked under the alterations of sputtering parameters. High optical reflectivities of Al, Cu films, approximately 70-90 %, showed high degree of surface flatness.

  • PDF

Voltage-Activated Electrochemical Reaction of Chemical Mechanical Polishing (CMP) Application (CMP공정의 전압 활성화로 인한 전기화학적 반응 특성 연구)

  • Han, Sang-Jun;Park, Sung-Woo;Lee, Sung-Il;Lee, Young-Kyun;Choi, Gwon-Woo;Lee, Woo-Sun;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.81-81
    • /
    • 2007
  • Chemical mechanical polishing (CMP) 공정은 deep 서브마이크론 집적회로의 다층배선구조률 실현하기 위해 inter-metal dielectric (IMD), inter-layer dielectric layers (ILD), pre-metal dielectric (PMD) 층과 같은 절연막 외에도 W, Al, Cu와 같은 금속층을 평탄화 하는데 효과적으로 사용되고 있으며, 다양한 소자 제작 및 새로운 물질 등에도 광범위하게 응용되고 있다. 하지만 Cu damascene 구조 제작으로 인한 CMP 응용 과정에서, 기계적으로 깨지기 쉬운 65 nm의 소자 이하의 구조에서 새로운 저유전상수인 low-k 물질의 도입으로 인해 낮은 하력의 기계적 연마가 필요하게 되었다. 본 논문에서는 전기화학적 기계적 연마 적용을 위해, I-V 특성 곡선을 이용하여 active, passive, transient, trans-passive 영역의 전기화학적 특성을 알아보았으며, Cu 막의 표면 형상을 알아보기 위해 scanning electron microscopy (SEM) 측정과 energy dispersive spectroscopy (EDS) 분석을 통해 금속 화학적 조성을 조사하였다.

  • PDF

Electroless Plated Copper Thin Film for Metallization on Printed Circuit Board : Neutral Process (인쇄회로기판상의 금속 배선을 위한 구리 도금막 형성 : 무전해 중성공정)

  • Cho, Yang-Rae;Lee, Youn-Seoung;Rha, Sa-Kyun
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.661-665
    • /
    • 2013
  • We investigated the characteristics of electroless plated Cu films on screen printed Ag/Anodized Al substrate. Cu plating was attempted using neutral electroless plating processes to minimize damage of the anodized Al substrate; this method used sodium hypophosphite instead of formaldehyde as a reducing agent. The basic electroless solution consisted of $CuSO_4{\cdot}5H_2O$ as the main metal source, $NaH_2PO_2{\cdot}H_2O$ as the reducing agent, $C_6H_5Na_3O_7{\cdot}2H_2O$ and $NH_4Cl$ as the complex agents, and $NiSO_4{\cdot}6H_2O$ as the catalyser for the oxidation of the reducing agent, dissolved in deionized water. The pH of the Cu plating solutions was adjusted using $NH_4OH$. According to the variation of pH in the range of 6.5~8, the electroless plated Cu films were coated on screen printed Ag pattern/anodized Al/Al at $70^{\circ}C$. We investigated the surface morphology change of the Cu films using FE-SEM (Field Emission Scanning Electron Microscopy). The chemical composition of the Cu film was determined using XPS (X-ray Photoelectron Spectroscopy). The crystal structures of the Cu films were investigated using XRD (X-ray Diffraction). Using electroless plating at pH 7, the structures of the plated Cu-rich films were typical fcc-Cu; however, a slight Ni component was co-deposited. Finally, we found that the formation of Cu film plated selectively on PCB without any lithography is possible using a neutral electroless plating process.

Metal-induced Crystallization of Amorphous Ge on Glass Synthesized by Combination of PIII&D and HIPIMS Process

  • Jeon, Jun-Hong;Kim, Eun-Kyeom;Choi, Jin-Young;Park, Won-Woong;Moon, Sun-Woo;Lim, Sang-Ho;Han, Seung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.144-144
    • /
    • 2012
  • 최근 폴리머를 기판으로 하는 고속 Flexible TFT (Thin film transistor)나 고효율의 박막 태양전지(Thin film solar cell)를 실현시키기 위해 낮은 비저항(resistivity)을 가지며, 높은 홀 속도(carrier hall mobility)와 긴 이동거리를 가지는 다결정 반도체 박막(poly-crystalline semiconductor thin film)을 만들고자 하고 있다. 지금까지 다결정 박막 반도체를 만들기 위해서는 비교적 높은 온도에서 장시간의 열처리가 필요했으며, 이는 폴리머 기판의 문제점을 야기시킬 뿐 아니라 공정시간이 길다는 단점이 있었다. 이에 반도체 박막의 재결정화 온도를 낮추어 주는 metal (Al, Ni, Co, Cu, Ag, Pd, etc.)을 이용하여 결정화시키는 방법(MIC)이 많이 연구되어지고 있지만, 이 또한 재결정화가 이루어진 반도체 박막 안에 잔류 금속(residual metal)이 존재하게 되어 비저항을 높이고, 홀 속도와 이동거리를 감소시키는 단점이 있다. 이에 본 실험은, 종래의 MIC 결정화 방법에서 이용되어진 금속 증착막을 이용하는 대신, HIPIMS (High power impulse magnetron sputtering)와 PIII&D (Plasma immersion ion implantation and deposition) 공정을 복합시킨 방법으로 적은 양의 알루미늄을 이온주입함으로써 재결정화 온도를 낮추었을 뿐 아니라, 잔류하는 금속의 양도 매우 적은 다결정 반도체 박막을 만들 수 있었다. 분석 장비로는 박막의 결정화도를 측정하기 위해 GIXRD (Glazing incident x-ray diffraction analysis)와 Raman 분광분석법을 사용하였고, 잔류하는 금속의 양과 화학적 결합 상태를 알아보기 위해 XPS (X-ray photoelectron spectroscopy)를 통한 분석을 하였다. 또한, 표면 상태와 막의 성장 상태를 확인하기 위하여 HRTEM(High resolution transmission electron microscopy)를 통하여 관찰하였다.

  • PDF

Study on Influencing Factors of Adhesive Strength for Polymer Coating on Metal Adherend by Dolly Test (돌리테스트로 고분자 코팅층과 금속 피착재의 접착강도 측정시 영향인자에 대한 연구)

  • Baeg, Ju-Hwan;Park, Hyun;Lee, Sung In;Ha, Yungeun;Cho, Young-Rae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.2
    • /
    • pp.1-8
    • /
    • 2019
  • The demand and importance of adhesives and paint coatings applied to solid surfaces such as metals, ceramics, and plastics are increasing. In this study, the influencing factors on the adhesive strength between the polymer coating and the metal adherend were investigated by Dolly test when the adhesive or the paint coating was applied on the metal adherend. Two-component epoxy adhesive was used as the adhesive, and EH2350, a two-component epoxy paint for anti-corrosion, was used as the paint. Especially, the effect of adherend metals(Al, Fe, STS, Cu, Zn), surface roughness and surface contamination(tap water, salt water) on adhesive strength was studied as influencing factors. The adhesive strength between adhesive and adherend was different when the type of metal adherend was different even when the same adhesive was used. It was found that spray water cleaning was necessary before the paint coating process on the surface of the oxide contaminated adherend with tap water or salt water. As a result of this study, it was confirmed that Dolly test can be widely used in the future to measure adhesive strength between paint coating and adherend.

Fabrication of AIN-based FBAR Devices by Using a Novel Process and Characterization of Their Frequency Response Characteristics in terms of Various Electrode Metals (새로운 공정을 이용한 AIN 체적 탄성파 소자의 제작 및 다양한 금속 전극막에 따른 주파수 응답 특성 분석)

  • Kim, Bo-Hyun;Park, Chang-Kyun;Park, Jin-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.915-920
    • /
    • 2007
  • AIN-based film bulk acoustic resonator (FBAR) devices which adopt a membrane-type configuration such as Mo/AIN/bottom-metal/Si are fabricated by employing a novel process. The proposed resonator structure does not require any supporting layer above the substrate, which leads to the reduction in energy loss of the resonators. For all the FBAR devices, the frequency response characteristics are measured and the device parameters, such as return loss and input impedance, are extracted from the frequency responses, and analyzed in terms of the various metals such as Al. Cu, Mo, W used in the bottom-electrode. The mass-loading effect caused by the used bottom-electrode metals is found to be the main reason for the difference revealed in the measured characteristics of the fabricated FBAH devices. The results obtained in this study also show that the degree of match in lattice constant and thermal expansion coefficient hetween piezoelectric layers and electrode metals is crucial to determine the device performance of FEAR.