• Title/Summary/Keyword: Al5083

Search Result 123, Processing Time 0.025 seconds

Weldability Evaluation in Plasma-GMA Hybrid Welding for Al-5083 Using Analysis of Variance (AL5083 합금에 대한 Plasma-GMA 용접에서 분산분석을 이용한 공정변수의 특성 평가)

  • Jung, Jin Soo;Lee, Jong Jung;Lee, Hee Keun;Park, Young Whan
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.28-33
    • /
    • 2014
  • In this paper, I-butt welding with 6mm thickness using Plasma-GMA welding was carried out. And weld characteristics of the Al-5083 aluminium alloy for Plasma-GMA hybrid welding was evaluated. The orthogonal experimental design was used to investigate the influence of plasma-MIG welding parameters such as plasma current, wire feeding rate, MIG-welding voltage and welding speed on the weld bead geometry and tensile strength using the ANOVA(Analysis of Variation). Then we conducted evaluation of contribution for process parameters. ANOVA results show that bead dimensions are affected by wire feeding speed, welding voltage and welding speed and tensile strength is mainly affected by welding speed and plasma arc current. Tensile strength was decreased by rise in plasma welding current because GMA welding current was decreased by plasma arc.

A Study on the Micro Forming of Al-based Superplastic Alloy and Zr-BMG for the Cavity Position (Al5083 초소성 합금과 Zr-BMG의 Cavity 위치에 따른 마이크로 성형연구)

  • Son, S.C.;Park, K.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.258-262
    • /
    • 2008
  • Micro forming is a suited technology to manufacture very small metallic parts(several $mm{\sim}{\mu}m$). In this study, the micro forming property was studied, using Al5083 superplastic alloy with micro grain, suitable for the micro forming process and Zr-BMG amorphous with pseudo-superplastic phenomena in the supercooled liquid state. Micro forming experiments under stastic load status showed that distortion by slip and spin of the grain system and slip inside the grain was observed in the Al5083 superplastic alloy. In case of Zr-BMG, because there is no grain, the distribution of the forming property was similar to the load distribution between punch and metal.

  • PDF

Mechanism of Crack Formation in Pulse Nd:YAG Laser Spot Welding of Al Alloys (Al합금 펄스 Nd:YAG 레이저 점 용접부의 균열 발생기구)

  • 하용수;조창현;강정윤;김종도;박화순
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.86-94
    • /
    • 2000
  • This study was performed to investigate types and formation mechanism of cracks in two Al alloy welds, A5083 and A7N01 spot-welded by pulse Nd : YAG laser, using SEM, EPMA and Micro-XRD. In the weld zone, three types of crack were observed : center line crack({TEX}$C_{C}${/TEX}), diagonal crack({TEX}$C_{D}${/TEX}), and U shape crack({TEX}$C_{U}${/TEX}). Also, HAZ crack({TEX}$C_{H}${/TEX}) was observed in the HAZ region, furthermore, mixing crack({TEX}$C_{M}${/TEX}) consisting of diagonal crack and HAZ crack was observed. White film was formed at th hot crack region in the fractured surface after it was immersed to 10% NaOH water. In the case of A5083 alloy, white films in {TEX}$C_{C}${/TEX} crack and {TEX}$C_{D}${/TEX} crack region were composed of low melting phases, {TEX}$Fe_{2}SiAl_{8}${/TEX} and eutectic phases, $Mg_2$Al$_3$ and $Mg_2$Si. Such films observed $CuAl_2$, {TEX}$Mg_{32}(Al,Zn)_{3}${/TEX}, MgZn$_2$, $Al_2$CuMg and $Mg_2$Si were observed in the whitely etched films near {TEX}$C_{C}${/TEX} crack and {TEX}$C_{D}${/TEX} crack regions. The formation of liquid films was due to the segregation of Mg, Si, Fe in the case of A5083 alloy and Zn, Mg, Cu, Sim in the case of A7N01 alloy, respectively. The {TEX}$C_{C}${/TEX} and {TEX}$C_{D}${/TEX} cracks were regarded as a result of the occurrence of tensile strain during the welding process. The formation of {TEX}$C_{M}${/TEX} crack is likely to be due to the presence of liquid film at the grain boundary near the fusion line in the base metal as well as in the weld fusion zone during solidification. The {TEX}$C_{U}${/TEX} crack is considered a result of the collapsed keyhole through incomplete closure during rapid solidification.

  • PDF

A Study on the Micro Vibration Forming of Al-based Superplastic Alloy and Zr-based Bulk Metallic Glass (Al계 초소성합금과 Zr계 비정질합금의 마이크로 진동성형에 관한 연구)

  • Son, Seon-Cheon;Park, Kyu-Yeol;Na, Young-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.193-200
    • /
    • 2007
  • Micro forming is a suited technology to manufacture very small metallic parts(several $mm{\sim}{\mu}m$). Al5083 superplastic alloy with very small grains has a great advantage in achieving micro deformation under low stress due to its relatively low strength at a specific high temperature range. Micro forming of $Zr_{62}Cu_{17}Ni_{13}Al_8$ bulk Metallic glass(BMG) as a candidate material for this developing process are feasible at a relatively low stress in the supercooled liquid state without any crystallization during hot deformation. In this study, the micro formability of Al5083 superplastic alloy and bulk metallic glass, $Zr_{62}Cu_{17}Ni_{13}Al_8$, was investigated with the specially designed micro vibration forming system using pyramid-shape, V-shape and U-shape micro die pattern. With these dies, micro vibration forming was conducted by varying the applied load, time. Micro formability was estimated by comparing the hight of formed shape using non-contact surface profiler system. The vibration load effect to metal flow in the micro die and improve the micro formability of Al5083 superplastic alloy and $Zr_{62}Cu_{17}Ni_{13}Al_8$ bulk Metallic glass(BMG).

Formation of ultrafine Grains in the Al 5083 Alloy by Cryogenic Rolling Process (극저온 압연에 의한 초세립 Al 5083 Alloy 제조)

  • 이영범;심혜정;남원종
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.163-167
    • /
    • 2003
  • The large deformation at cryogenic temperature would be one of the effective methods to produce large bulk UFG materials. The effects of annealing temperature 150∼300$^{\circ}C$, on microstructure and mechanical properties of the sheets received 85% reduction at cryogenic temperature were investigated. In comparison with those at room temperature. Annealing of 5083 Al alloy deformed 85%, at 200$^{\circ}C$ for an hour, results in the considerable increase of tensile elongation without the great loss of strength and the occurrence of equiaxed grains less than 300nm in diameter.

  • PDF

Effect of Residual Stress in Al5083 TIG Weld Region on Fatigue Crack Propagation Behavior (Al5083재 TIG용접부의 잔류응력이 피로균열전파거동에 미치는 효과)

  • Lee, Ouk-Sub;Park, Chan-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.943-951
    • /
    • 1999
  • The welded structure unnecessarily remains residual stress due to the very high heating of local region and lastly cooling. The residual stress sometimes causes fracture initiation of welded structures. In this paper, distribution and magnitude of tensile and compressive residual stresses in the TIG(Tungsten Inert Gas) welded aluminum alloy such as Al5083-H112 are measured by using the hole-drilling method. Furthermore, the effects of residual stresses in the TIG welded aluminum CCT(Center Crack Tension) and SEN(Single Edge Notched) Specimens on the fatigue crack propagation behavior are analyzed. The fatigue cracks initiated at residual stresses region are influnced by tensile and compressive residual stresses. However, the effects are found to be released fast for both cases according to the cyclic loads and extension of crack length.

Study for groove angle of Al 5083 in Butt Welding (Al 5083 Butt 용접시 개선각에 관한연구)

  • 이해우;김세환
    • Proceedings of the KWS Conference
    • /
    • 1994.05a
    • /
    • pp.222-225
    • /
    • 1994
  • The weldability of aluminum is excel lent but weld metal is subject to include weld defects such as porosities, crack, incomplete penetration and incomplete fusion because of improper welding parameters. Especially, the porosities are main weld defects because the difference of hydrogen solubility change in melt ins and solidification state with temperature changing. Deformation of aluminum is larger than mi Id steel due to higher thermal conductivity. It is reported that porosities in deposited metal affect tensile strength and elongation. Therefore, the effect of groove angle on porosities and mechanical properties of weld metal were researched in this report where Al-5083 plate was used with 5356 filler metal that are excellent anti corrosion and strength.

  • PDF

A Prediction of Surface Roughness on the PCD Tool Turned Al5083 by using Regression Analysis (Al5083 PCD 선삭가공에서 회귀분석에 의한 표면거칠기 예측)

  • Lee, Sun-Woo;Lee, Dong-Ju
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.69-74
    • /
    • 2012
  • Surface roughness is widely used as an index for processing degree of accuracy. Recently, regression analysis to predict the machining results are actively used to characterize a cutting operations. In the past, diamond machining had been used for ultra precision cutting operation, but now industrial diamond tools like PCD(Polycrystalline Diamond) have been widely used in ultraprecision machining of nonferrous metals. In this study, the authors focus on the effect of PCD tool property on the surface roughness of Al5083 aluminum alloy after cutting process by CNC operated lathe. Based on the regression analysis approach on a surface roughness data obtained by experiment, predictive analysis of surface roughness is effective to achieve better surface quality.