• 제목/요약/키워드: Al2TiO5-점토 복합체

검색결과 2건 처리시간 0.015초

Al2TiO5-점토 복합체를 이용한 원적외선방사재질의 개발 (Development of Al2TiO5-Clay Composites for Far Infrared Radiator)

  • 한상목;신대용
    • 산업기술연구
    • /
    • 제20권A호
    • /
    • pp.239-245
    • /
    • 2000
  • Sintered $Al_2TiO_5$ has a very low thermal expansion and an infrared radiative selectively emitting large amounts of far infrared rays. However, it is week in mechanical strength. Spectral infrared emittance, thermal expansion coefficient, and mechanical strength of $Al_2TiO_5$-clay composites were studied to develop a material for far infrared radiators. The composites containing 10~50 mass% Jungsan clay had high emittance in the range of 2,000~500cm-1. The bending strength of the $Al_2TiO_5$-clay composites increased with increasing clay content. The $Al_2TiO_5$-clay composites with a clay content of 50mass% and heat-treated at $1,200^{\circ}C$ had a large strength for infrared radiators ; 86MPa. The average linear thermal expansion coefficient from $200{\sim}1,000^{\circ}C$ of the 50mass% jungsan clay containing compo sited heat-treated at $1,200^{\circ}C$ was lower than $3.87{\times}10-6/^{\circ}C$.

  • PDF

$Al_2TiO_5$-점토 복합체를 이용한 적외선 방사체의 개발 (Development of $Al_2TiO_5$-Clay Composites for Infrared Radiator)

  • 신대용;한상목
    • 한국세라믹학회지
    • /
    • 제37권2호
    • /
    • pp.122-127
    • /
    • 2000
  • The thermal expansion, thermal stability, mechanical strength and infrared radiative property of Al2TiO5-clay composites, prepared from synthesized Al2TiO5 and clay, were investigated to develop a material for far infrared radiators. The emittance of composites containing 10~50 wt% clay, heated at 1,20$0^{\circ}C$ for 3 h, increased with increasing clay content and emittance was about 0.3 and 0.92 in the ranges of 3,400~2,500 cm-1 and 2,500~400cm-1, respectively. The bulk density and bending strength of the Al2TiO5-clay composites increased with increasing clay content. 50 wt% Al2TiO5-50 wt% clay composite, heat-treated at 1,20$0^{\circ}C$, had an adequate strength for infrared radiators; 80 MPa. The degree of thermal expansion hysteresis decreased with increasing clay content and the mean thermal expansion coefficient increased with increasing clay content. The thermal expansion coefficient of 50 wt% Al2TiO5-50 wt% clay composite heated at 1,20$0^{\circ}C$ was 5.78$\times$10-6/$^{\circ}C$.

  • PDF