• Title/Summary/Keyword: Al-anode

Search Result 219, Processing Time 0.025 seconds

Crystallization Behavior and Electrochemical Properties of Si50Al30Fe20 Amorphous Alloys as Anode for Lithium Secondary Batteries Prepared by Rapidly Solidification Process (액체급랭응고법으로 제조된 리튬 이차전지 음극활물질용 Si50Al30Fe20 비정질 합금의 결정화 거동 및 전기화학적 특성)

  • Seo, Deok-Ho;Kim, Hyang-Yeon;Kim, Sung-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.341-348
    • /
    • 2019
  • This paper reports the microstructure and electrochemical properties of Si-Al-Fe ternary amorphous alloys prepared by rapid solidification as an anode for lithium secondary batteries. The microstructure was analyzed using XRD and HR-TEM with EDS mapping. In accordance with DSC analysis, annealing was performed to crystallize the active nano-Si in the amorphous alloy. Thus, nano-Si forms (~80 nm) embedded in the matrix alloy, such as $Fe_2Al_3Si_3$, $FeSi_2$, and $Fe_{0.42}Si_{2.67}$, were successfully synthesized. The electrode based on the Si-Al-Fe ternary alloy delivered an initial discharge capacity of approximately $700mAh^{g-1}$, and exhibited a high Coulombic efficiency of 99.0~99.6% from the $2^{nd}$ to $70^{th}$ cycles.

Ni added Si-Al Alloys with Enhanced Li+ Storage Performance for Lithium-Ion Batteries

  • Umirov, Nurzhan;Seo, Deok-Ho;Jung, Kyu-Nam;Kim, Hyang-Yeon;Kim, Sung-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.82-88
    • /
    • 2019
  • Here, we report on nanocrystalline Si-Al-M (M = Fe, Cu, Ni, Zr) alloys for use as an anode for lithium-ion batteries, which were fabricated via a melt-spinning method. Based on the XRD and TEM analyses, it was found that the Si-Al-M alloys consist of nanocrystalline Si grains surrounded by an amorphous matrix phase. Among the Si-Al-M alloys with different metal composition, Ni-incorporated Si-Al-M alloy electrode retained the high discharge capacity of 2492 mAh/g and exhibited improved cyclability. The superior $Li^+$ storage performance of Si-Al-M alloy with Ni component is mainly responsible for the incorporated Ni, which induces the formation of ductile and conductive inactive matrix with crystalline Al phase, in addition to the grain size reduction of active Si phase.

A Study on the Galvanic corrosion and its Protection on Heat Exchanger Tube Plate (열교환기 관판의 전지작용부식과 방지에 관한 연구)

  • 임우조;홍성희;윤병두
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.344-350
    • /
    • 2001
  • This paper was studied on the characteristics of galvanic corrosion and its protection on heat exchanger tube plate in the sea water. In this paper, behavior of pitting corrosion of Ni-al bronze connected with Ti tube was measured af flow velocity of 0 m/s and 2.4 m/s. To protect galvanic corrosion, the protection characteristics of Ni-Al bronze connected with Ti tube by Zn-base alloys galvanic anode and hexagonal nylon insert was investigated. Main results obtained asre al follows: 1) The galvanic corrosion of Ni-Al bronze connected with Ti-tube is more active than single Ni-al bronze. 2) As the circuit resistance increase under the cathodic protection employing Zn-base alloys galvanic anode, Ni-al bronze connected with Ti tube is cathodically unpolarized. 3) The corrosion of Ni-Al bronze connected with Ti tube by nylon insert controls approximately 73% than not nylon insert.

  • PDF

A Study on the Galvanic corrosion and its Protection on Heat Exchanger Tube Plate (열교환기 관판의 전지작용부식과 방지에 관한 연구)

  • U-J Lim;S-H Hong;B-D Yun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.345-345
    • /
    • 2001
  • This paper was studied on the characteristics of galvanic corrosion and its protection on heat exchanger tube plate in the sea water. In this paper, behavior of pitting corrosion of Ni-al bronze connected with Ti tube was measured af flow velocity of 0 m/s and 2.4 m/s. To protect galvanic corrosion, the protection characteristics of Ni-Al bronze connected with Ti tube by Zn-base alloys galvanic anode and hexagonal nylon insert was investigated. Main results obtained asre al follows: 1) The galvanic corrosion of Ni-Al bronze connected with Ti-tube is more active than single Ni-al bronze. 2) As the circuit resistance increase under the cathodic protection employing Zn-base alloys galvanic anode, Ni-al bronze connected with Ti tube is cathodically unpolarized. 3) The corrosion of Ni-Al bronze connected with Ti tube by nylon insert controls approximately 73% than not nylon insert.

A Study on Improvement of Cathodic Protection Design of Harbour Marine Steel Structure (항만 강관 구조물의 음극방식설계 개선방안에 관한 연구)

  • 김성종
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.584-590
    • /
    • 1997
  • Harbour marine steel structures, which are served in severe marine environment, should be protected in appropriate method to reduce corrosion problems. Cathodic protection, one of the protection methods in terms of practical and economical point of view is being widely used to marine steel structures mentioned above. Recently it has been reported that the life of Al alloy anode with sacrificial anode for protection of harbour marine steel structures was shortened significantly than the original design life. In this study, the optimum cathodic protection design of harbour marine steel structures was investigated with parameter of sea water pollution degree.

  • PDF

A Study on Mitigation of Rail Corrosion using Sacrificial Anode Cathodic Protection Method (희생양극법을 이용한 레일부식 저감 방안에 관한 연구)

  • Choi, Jung-Youl;Kim, Jun-Hyung;Lee, Kyu-Yong;Kim, Young-Ki;Park, Jong-Yoon;Song, Bong-Hwan;Seol, Jin-Woong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.54-60
    • /
    • 2017
  • A railway rail will be corroded by the repetitive sea wind and fog in the splash and tidal zone such as Youngjong grand bridge. And these rusts of rail could be increased by increasing service period, and it frequently occurred the safety accidents or disorders in electrical problem. In this study, the sacrificial anode cathodic protection method was proposed as a measures for reducing the corrosion of the railway rails in the oceanic climate conditions. As the results of immersion test using the salt water during four months, the sacrificial anode cathodic protection method using the aluminum anode(Al-anode) was evaluated that a distinct effect on corrosion reduction in the rails. Therefore the sacrificial anode cathodic protection method was experimentally proven that a disorders in aspects electric and signal of railway operation condition such as direct fixation track system in Youngjong grand bridge could be prevented by reducing rust falling from the rail. In addition, the installation conditions of the anodes directly affect the transmission range of corrosion potential, the sectional loss of anode, and the corrosion reduction effect. Therefore, to expect the corrosion reduction effect of rails under the oceanic climate conditions for railway track, it was important to adopted the appropriate spacing of anode installation by considering the actual field conditions.

Emission Characteristics of Blue Fluorescent OLED with Anode Materials (양극 물질에 따른 청색 형광 OLED의 발광 특성)

  • Kong, Do-Hoon;Lee, Yo-Seb;Ju, Sung-Hoo;Yang, Jae-Woong
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.3
    • /
    • pp.121-125
    • /
    • 2015
  • We studied the blue fluorescent OLED with Mg:Ag, Al, Ni as anode materials. Blue fluorescent OLEDs were fabricated using Anode / $MoO_3$ (3 nm) / 2-TNATA (60 nm) / NPB (30 nm) / SH-1 : BD-2 (5 vol.%, 30 nm) / Bphen (40 nm) / Liq (1 nm) / Al (150 nm). Current density of OLED with Mg:Ag was not measured due to too low work function, and that of OLED with Al showed $45.2mA/cm^2$ at 12 V. Luminance and Current efficiency of OLED with Al showed $385.1cd/m^2$ and 0.9 cd/A. Current density of OLED with Ni of 8, 10, 12 nm thickness showed 10, 12.9, $37.2mA/cm^2$, respectively. Luminance and Current efficiency of OLED with Ni of 8, 10, 12 nm thickness showed 670.9, 991.2, $1,320cd/m^2$ and 6.7, 7.7, 3.6 cd/A, respectively. Transmittance of Al was 52.2% at 476 nm wavelength and that of Ni of 8, 10, 12 nm thickness was 79, 77, 74 %, respectively. In spite of best current density, OLED with Al showed the lowest luminance and current efficiency because of low work function and poor transmittance. When thickness of Ni was increased to 12nm, current efficiency was sharply lower owing to bad transmittance and unbalance of holes and electrons. Finally, OLED with Ni of 10 nm thicknes showed the highest current efficiency.

Development of Large-scale Ni-Al Alloy Fabrication Process at Low Temperature (대용량 저온 Ni-Al 합금 분말 제조 공정 개발)

  • LEE, MIN JAE;KANG, MIN GOO;JANG, SEONG-CHEOL;HAM, HYUNG CHUL;AHN, JOONG WOO;NAM, SUK WOO;YOON, SUNG PIL;HAN, JONGHEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.64-70
    • /
    • 2018
  • In this study, the kg-class Ni-Al alloy fabrication process at low temperature was developed from the physical mixture of Ni and Al powders. The AlCl3 as an activator was used to reduce the temperature of alloy synthesis below the melting temperature of Ni and Al elements (<$500^{\circ}C$). Mixed phase of Ni3Al intermetallic and Ni-Al solid-solution were identified in the XRD pattern analysis. Furthermore, from the analysis of SEM and particle size analyzer, we found that the particle size of synthesized alloy powders was not changed compared to the initial size of Ni particle after the formation of alloy powder at $500^{\circ}C$. In the creep test, the anode (which was fabricated by the prepared Ni-Al alloy powders in this study) displayed the enhanced creep resistance compared to the conventional anode.

Influence of the Thin Anode Geometry on the Performance of Molten Carbonate Fuel Cells (얇은 연료극 구조가 용융탄산염 연료전지 성능에 미치는 영향)

  • Seo, Dong-Ho;Park, Dong-Nyeok;Yoon, Sung-Pil;Han, Jong-Hee;Oh, In-Hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.599-608
    • /
    • 2011
  • The Ni-Al anodes of the molten carbonate fuel cell (MCFC) with three different structures were successfully fabricated in order to reduce the thickness of the anode down to 0.3 mm; one was the non-supported anode made by a conventional tape casting method, and others were the supported anodes made by lamination or direct casting on the nickel screen. It was seen from the physical analyses and cell operation that the supported thin anodes made by direct casting showed good mechanical strength and cell performance because of a good contact between the anode materials and the support. The single cell using the above anode showed the cell voltage of 0.858 V at the current density of 150$mA/cm^2$ with the nitrogen cross-over of only 0.6% at the operation time of 1,000 h, which was similar to the performance of the conventional thick (0.7 mm) anode. The ability to utilize a thin configuration of anode should cut down the amount of nickel alloy and consequently reduce its manufacturing cost.

Built-in voltage depending on electrode in organic light-emitting diodes (전극 변화에 따른 유기 발광 소자의 내장 전압)

  • Yoon, Hee-Myoung;Lee, Eun-Hye;Lee, Won-Jae;Chung, Dong-Hoe;Oh, Young-Cheul;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04b
    • /
    • pp.14-16
    • /
    • 2008
  • Built-in voltage in organic light-emitting diodes was studied using modulated photocurrent technique ambient conditions. From the bias voltage-dependent photocurrent, built-in voltage of the device is determined. The applied bias voltage when the magnitude of modulated photocurrent is zero corresponds to a built-in voltage. Built-in voltage in the device is generated due to a difference of work function of the anode and cathode. A device was made with a structure of anode/$Alq_3$/cathode to study a built-in voltage. ITO was used as an anode, and Al and LiAl were used as a cathode. A layer thickness of Al and LiAl were 100nm. Obtained built-in voltage is about 1.0V in the Al layer was used as a cathode. The obatined built-in voltage is about 1.6V in the LiAl layer was used as a cathode. The result of built-in voltage is dependent of cathode. We can see that the built-in voltage increase up to 0.4V when the LiAl layer was used as the cathode. These results correspond to the work function of LiAl which is lower than that of Al. As a result, the barrier height for an electron injection from the cathode to the organic layer could be lowered when the LiAl was used as a cathode.

  • PDF