• Title/Summary/Keyword: Al-Ti-Si-N

Search Result 207, Processing Time 0.034 seconds

The Study of Nano-Mechanical Properties of TiAlSiN Coating Layer with Nitrogen Content (질소 함량에 따른 TiAlSiN 코팅층의 나노 기계적 특성 평가)

  • Gang, Bo-Gyeong;Choe, Yong;Baek, Yeol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.255-255
    • /
    • 2015
  • 나노압침방법을 적용하여 arc ion plating을 통해 제조된 TiAlSiN 코팅층의 질소 함량에 따른 나노 기계적 특성을 평가하였다. 코팅층의 질소 함량은 28~30 [at.%] 이었다. 코팅층에는 AlN, TiSi, $Al_5Ti_3$, $Ti_3AlN$, $Al_5Ti_2$ 상이 형성되었다. 질소 함량이 더 작은 코팅층의 나노경도, 마찰계수, 피로한계의 값이 높아짐을 알 수 있었다.

  • PDF

Fabrication of Alloy Target for Formation of Ti-Al-Si-N Composite Thin Film and Their Mechanical Properties (Ti-Al-Si-N 박막 제작을 위한 합금 타겟 제조 및 박막의 기계적 특성)

  • Lee, Han-Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.10
    • /
    • pp.665-670
    • /
    • 2016
  • Prevailing dissemination of machine tools and cutting technology have caused drastic developments of high speed dry machining with work materials of high hardness, and demands on the high-hardness-materials with high efficiency have become increasingly important in terms of productivity, cost reduction, as well as environment-friendly issue. Addition of Si to TiAlN has been known to form nano-composite coating with higher hardness of over 30 GPa and oxidation temperature over $1,000^{\circ}C$. However, it is not easy to add Si to TiAlN by using conventional PVD technologies. Therefore, Ti-Al-Si-N have been prepared by hybrid process of PVD with multiple target sources or PVD combined with PECVD of Si source gas. In this study, a single composite target of Ti-Al-Si was prepared by powder metallurgy of MA (mechanical alloying) and SPS (spark plasma sintering). Properties of he resulting alloying targets were examined. They revealed a microstructure with micro-sized grain of about $1{\sim}5{\mu}m$, and all the elements were distributed homogeneously in the alloying target. Hardness of the Ti-Al-Si-N target was about 1,127 Hv. Thin films of Ti-Al-Si-N were prepared by unbalanced magnetron sputtering method by using the home-made Ti-Al-Si alloying target. Composition of the resulting thin film of Ti-Al-Si-N was almost the same with that of the target. The thin film of Ti-Al-Si-N showed a hardness of 35 GPa and friction coefficient of 0.66.

Effects of Alloying Elements on the Pitting Behavior of Ti-Al Intermetallic Compounds (TiAl 금속간화헙물의 공식거동에 미치는 합금원소의 영향)

  • 이호종;최한철
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.3
    • /
    • pp.157-164
    • /
    • 1998
  • Effects of alloying elements on the pitting behavior of Ti-Al intermetalic compounds in the electrolytic soution containing Cl- were investigated through electrochemical tets and corrosion morphologies. Corrosion potential increased in the case of Cr addition to Ti-48%Al, whereas it decreased in the case of Si and B addition. The simultaneous addition of Cr and Si increased passive current density and decrosion corrosion potential. The passive current density of N addtion was higher than that of B addition in H2SO4 solution. With the addition of alloying elements, The pitting resistance decreased in order of TiAl>TiAlSi>TiAlN>TiAlB>TiAlCr and whin siumultaneous addition, it decreased in order of TiAlCrSi>TiAlCrBN>TiAlCrrN. The surface merohology after pitting test showed that the TiAl coataining Si had for fewer pits than that containing Cr and N simultaneously.

  • PDF

High-temperature Oxidation Kinekics and Scales Formed on the TiAlSiN film (TiAlSiN 코팅의 대기중 고온산화 속도와 스케일 분석)

  • Ji, Gwon-Yong;Park, Sang-Hwan;Kim, Min-Jeong;Park, Sun-Yong;Jeong, Seung-Bu;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.131-132
    • /
    • 2015
  • $Ti_{0.26}Al_{0.16}Si_{0.01}N_{0.57}$ (at%) coatings were synthesized on stainless steel 304 by using arc ion plating systems (AIPS). Targets employed for the deposition were Ti, AlSi(67:33at%) and AlSi(82:18at%). The thickness of TiAlSiN coatings is $4{\mu}m$. The oxidation characteristics of the deposited coatings were studied by thermogravimetric analysis (TGA) in air between 800 and $900^{\circ}C$ for 75 hr. The oxide scale formed on the TiAlSiN coatings consisted of $rutile-TiO_2$ layer and ${\alpha}-Al_2O_3$. At $800^{\circ}C$, the coatings oxidized relatively slowly, and the scales were thin and adherent. When oxidized above $900^{\circ}C$, $TiO_2$ grew fast over the mixed oxide layer, and the oxide scale formed on TiAlSiN coatings was prone to spallation. Microstructural changes of the TiAlSiN coatings that occurred during high temperature oxidation were investigated by EPMA, XRD, SEM and TEM.

  • PDF

Cutting Performance of Ti-Al-Si-N Coated Endmill for High-Hardened materials by Hybrid Coating System (하이브리드 코팅에 의한 고경도 소재용 Ti-Al-Si-N코팅 엔드밀의 절삭성능평가)

  • 김경중;강명창;이득우;김정석;김광호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.89-94
    • /
    • 2003
  • Hard coatings are known to improve the performance of cutting tools in aggressive machining applications, such as high speed machining. New superhard Ti-Al-Si-W films, characterized by a nanocomposite nano-sized (Ti,Al,Si)N crystallites embedded in amorphous $Si_3 N_4$ matrix, could be successfully synthesized on WC-Co substrates by a hybrid coating system of arc ion plating(AIP) and sputtering method. The hardness of Ti-Al-Si-N film increased with incorporation of Si, and had the maximum value ~50 GPa at the Si content of 9 at.%, respectively. And the X-ray diffraction patterns of Ti-Al-Si-N films with various Si content is investigated. In this study, Ti-Al-Si-N coatings were applied to end-mill tools made of WC-Co material by a hybrid coating system. Cutting tests fir the high-hardened material (STD11,$H_R$)C62 and their performances in high speed cutting conditions were studied. Also, the tool wear and tool lift of Ti-Al-Si-N with various si(6, 9, 19) contents were measured.

  • PDF

Mechanical Properties of TiAlSiN Films prepared by hybrid process of cathodic arc deposition and sputtering (음극아크증착과 스퍼터링의 하이브리드 공정으로 제조된 TiAlSiN 코팅층의 물성)

  • Yang, Ji-Hun;Kim, Seong-Hwan;Jeong, Jae-Hun;Byeon, In-Seop;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.104-104
    • /
    • 2016
  • 음극아크증착과 스퍼터링을 동시에 사용한 하이브리드 공정으로 제조된 TiAlSiN 코팅층의 물성을 평가하였다. TiAlSiN 코팅층은 음극아크 소스에 Ti-Al 타겟을 장착하고 스퍼터링 소스에는 Si 타겟을 장착하여 아르곤과 질소 가스의 혼합가스 분위기에서 스테인리스(SUS304)와 초경(cemented carbide; WC-15wt.%Co) 기판 위에 제조되었다. 음극아크 소스에 인가되는 전류는 고정하고 스퍼터링 소스에 인가되는 전력을 조절하여 TiAlSiN 코팅층의 Si 함량을 제어하였다. TiAlSiN 코팅층의 Si 함량이 증가하면 코팅층의 구조가 주상정에서 비정질 구조로 변화한다. 이는 Si 함량이 증가하면 코팅층에 형성되는 알갱이 구조의 크기가 줄어들기 때문이다. X-선 회절 결과와 Scherrer's equation을 이용하여 Si 함량에 따른 알갱이 구조의 크기를 계산하면 Si이 없는 코팅층은 약 14 nm의 크기를 보이며 8 at.% 이상의 함량에서 약 2.5 nm로 포화된다. TiAlSiN 코팅층의 경도를 Si 함량에 따라 측정하면 Si 함량이 증가하면 경도도 증가하는 경향을 보이며 약 9 at.%의 Si 함량에서 3200 Hv로 최대가 되고 이후에는 감소한다. TiAlSiN이 코팅된 스테인리스 시편을 대기에서 열처리하고 시편 무게증가를 측정하여 코팅층의 내열성을 평가하였다. Si 함량이 증가하면 내열성도 향상되는데 14.4 at.%의 Si 함량에서 $700^{\circ}C$까지 무게 증가가 없으며 $900^{\circ}C$까지 0.43 mg의 증가를 보인다. 본 실험을 통해서 얻어진 TiAlSiN 코팅층은 비교적 높은 경도와 내열성을 확보하여 절상공구 보호막 코팅 소재 등으로 활용이 가능할 것으로 판단된다.

  • PDF

Property and formation behavior of TiAlSiWN nanocomposite coating layer by the AIP process (AIP 공정 적용 TiAlSiWN 나노 복합체 코팅층의 형성 거동 및 특성 평가)

  • Lee, Jeong-Han;Park, Hyeon-Guk;Jang, Jun-Ho;Hong, Seong-Gil;O, Ik-Hyeon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.97.2-97.2
    • /
    • 2018
  • This study formed a hard TiAlSiWN coating layer using Ti, Al, Si and W raw powders that were mechanically alloyed and refined. The TiAlSi and TiAlSiW coating targets were fabricated using a single PCAS process in a short time with the optimal sintering conditions. The coating targets were deposited on the WC substrate by forming coating layers using TiAlSiN and TiAlSiWN nitride nano-composite structures with an AIP process. The properties of the nitride nano-composite coating layers were compared according to the addition of W. The microstructure of the nitride nano-composite coating layer was analyzed, focusing on the distribution of the crystalline phases, amorphous phases ($Si_3N_4$), and growth orientation of the columnar crystal depending on the addition of W. The mechanical properties of the coating layers were exhibited a hardness of approximately $3,000kg/mm^2$ and adhesion of about 117.77N in the TiAlSiN. In particular, the TiAlSiWN showed excellent properties with a hardness of more than $4,300kg/mm^2$ and an adhesion of about 181.47N.

  • PDF

Thermal Stability of TiN/Ti Barrier Metals with Al Overlayers and Si Substrates Modified under Different Annealing Histories (형성조건에 따른 TiN/Ti Barrier Metal의 Al 및 Si 과의 열적 안정성)

  • 신두식;오재응;유성룡;최진석;백수현;이상인;이정규;이종길
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.7
    • /
    • pp.47-59
    • /
    • 1993
  • The thermal stability of "stuffed" TiN/Ti barrier matals with different annealing history has been studied to improve the contact reliability of Al/Si contacts in 16M DRAM. The annealing conditions before the Al deposition such as film thickness, the annealing temperature and the annealing ambient have been varied. For TiN(900A)/Ti(300A) annealed at 450 in nitrogen ambient to form a "stuffed barrier" by inducing oxygen atoms into grain boundaries, there is no observation of Al penetrations into Si substrates after the post heat treatment of up to 700 even though there are massive amounts of Al found in TiN film after the post heat treatment of 600 indicating that TiN has a "sponge-like" function due to its ability to absorb several amounts of aluminum at elevated temperature. The TiN/Ti diffusion barrier annealed at 550 has, however, failed after the post heat treatment at 600. The thinner diffusion barriers with TiN(300A)/Ti(100A) failed after the post heat treatment at 600.he post heat treatment at 600.

  • PDF

High temperature oxidation of TiAlCrSiN thin films (TiAlCrSiN 박막의 고온산화)

  • Hwang, Yeon-Sang;Kim, Min-Jeong;Kim, Seul-Gi;Bong, Seong-Jun;Won, Seong-Bin;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.161-161
    • /
    • 2012
  • 결정질 TiCrN과 AlSiN 나노층이 교대로 구성하는 나노 다층 TiAlCrSiN 박막은 음극 아크 플라즈마 증착법에 의해 증착되었다. 나노 다층 TiAlCrSiN 박막의 산화특성들은 $600{\sim}1000^{\circ}C$사이에서 대기 중 최대 70시간동안 연구 되었다. 형성된 산화물들은 주로 $Cr_2O_3$, ${\alpha}-Al_2O_3$, $SiO_2$ 그리고 rutile-$TiO_2$들로 구성되었다. 나노 다층 TiAlCrSiN 박막이 산화하는 동안, 가장 바깥쪽의 $TiO_2$층은 Ti 이온의 외부확산에 의해, 외부 $Al_2O_3$층은 Al이온의 외부확산에 의해 형성되었다. 동시에, 내부($Al_2O_3$, $Cr_2O_3$) 혼합층과 가장 안쪽의 $TiO_2$층은 산소이온의 내부확산에 의해 형성되었다.

  • PDF

High-temperature Oxidation of Nano-multilayered TiAlSiN Filems (나노 다층 TiAlSiN 박막의 고온 산화)

  • Lee, Dong-Bok;Kim, Min-Jeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.189-189
    • /
    • 2016
  • In this study, the Al-rich AlTiSiN thin films that consisted of TiN/AlSiN nano-multilayers were deposited on the steel substrate by magnetron sputtering, and their high-temperature oxidation behavior was investigated, which has not yet been adequately studied to date. Since the oxidation behavior of the films depends sensitively on the deposition method and deposition parameters which affect their crystallinity, composition, stoichiometry, thickness, surface roughness, grain size and orientation, the oxidation studies under various conditions are imperative. AlTiSiN nano-multilayer thin films were deposited on a tool steel substrate, and their oxidation behavior of was investigated between 600 and $1000^{\circ}C$ in air. Since the amount of Al which had a high affinity for oxygen was the largest in the film, an ${\alpha}-Al_2O_3-rich$ scale formed, which provided good oxidation resistance. The outer surface scale consisted of ${\alpha}-Al_2O_3$ incoporated with a small amount of Ti, Si, and Fe. Below this outer surface scale, a thin ($Al_2O_3$, $TiO_2$, $SiO_2$)-intermixed scale formed by the inwardly diffusing oxygen. The film oxidized slower than the $TiO_2-forming$ kinetics and TiN films, but faster than ${\alpha}-Al_2O_3-forming$ kinetics. During oxidation, oxygen from the atmosphere diffused inwardly toward the reaction front, whereas nitrogen and the substrate element of iron diffused outwardly to a certain extent.

  • PDF