• 제목/요약/키워드: Al-Si-Mg 합금

검색결과 199건 처리시간 0.024초

선체 재료용 Al-Mg 합금과 Al-Mg-Si 합금의 해수 내 캐비테이션 특성 (Cavitation Characteristics of Al-Mg and Al-Mg-Si Alloy for Ship in Sea Water)

  • 김성종;김규환;이승준
    • Corrosion Science and Technology
    • /
    • 제10권4호
    • /
    • pp.136-142
    • /
    • 2011
  • Al alloys have been used widely for commercial and military ships in most ocean countries since mid-1950s, and the value as light metal with high mechanical strength has been proven. As the safety and fuel efficiency of Al ships have improved, she can carry more freight, sail faster and travel longer distances. Furthermore, in the shipbuilding industry, Al alloys are applied as structural materials for ships to various areas including the deck of luxurious cruises, battleships and leisure ships. In addition, Al alloys are being spotlighted as environmental-friendly material as they can be recycled even after end of lifespan. However, Al alloys for ships must be carefully selected after considering corrosion resistance, endurance, strength, and weldability in sea water environment. Al alloys to satisfy these conditions are used widely include 5000 series Al-Mg alloy and 6000 series Al-Mg-Si alloy. Thus, this study selected and evaluated the cavitation characteristics of the 5000 series Al alloys that are used in hulls that directly contact seawater and the 6000 Al alloys that are used in the upper structures of ships. Results of cavitation test with time, weightloss and cavitation rate of 5456-H116 showed the smallest damage among 5052-O, 5456-H116 and 6061-T6.

Mg, Zn, Si 성분이 7xxx 계 알루미늄 합금의 압출성에 미치는 영향 (The Effect of Mg, Zn, Si wt(%) on the Extrudability of 7xxx Al Alloy)

  • 함현욱;김병민;조훈;조형호
    • 한국정밀공학회지
    • /
    • 제16권11호
    • /
    • pp.148-157
    • /
    • 1999
  • The objective of this study is to investigate the effect of three main chemical compositions(Mg, Zn, Si) on extrudability of 7xxx Al alloy with high tensile strength. A few Al alloys based on 7xxx alloys were metal mold cast with various weight*%) of Mg 0.3-1.2%, Zn 5.0-8.0% and Si 0.4-0.7%, to envestigate the effects of extrudability, as well as mechanical properties. To measure the extrudability of cast billets, maximum extrusion pressure and surface temperature at die exit before tearing occurs were obtained by experiment and simulation of thermo-viscoplastic F.E.M. Also the yield and tensile strength of extruded products were tested.

  • PDF

Al-5%Mg 합금의 주조성과 기계적 성질에 미치는 합금원소 Mn 및 Si의 영향 (Effects of Mn and Si Contents on the Castabilities and Mechanical Properties of Al-5%Mg Base Alloys)

  • 김정민;성기덕;전중환;김기태;정운재
    • 한국주조공학회지
    • /
    • 제25권5호
    • /
    • pp.216-220
    • /
    • 2005
  • High ductility Al-Mg alloys often contain some Mn and Si, however the effects of these minor alloying elements on various properties of alloys have not been fully understood. In this study the castability and mechanical properties of Al-5%Mg alloy were investigated according to the addition of Mn and Si. The fluidity of the alloys was generally increased by increasing Si or Mn contents. The feedability was also increased by increasing Si content, but it was rather decreased by increasing Mn content. Both the tensile strength and the ductility appeared to be deteriorated by Si addition, while they were found to be improved by Mn addition.

Al-Mg 계 다이캐스팅 합금의 미세조직 및 기계적 성질에 미치는 Mg 및 Si의 영향 (Effects of Mg and Si on Microstructure and Mechanical Properties of Al-Mg Die Casting Alloy)

  • 조재익;김철우
    • 한국주조공학회지
    • /
    • 제32권5호
    • /
    • pp.219-224
    • /
    • 2012
  • The effects of Mg and Si contents on the microstructure and mechanical properties in Al-Mg alloy (ALDC6) were investigated. The results showed that phase fraction and size of $Mg_2Si$ and $Al_{15}(Fe,Mn)_3Si_2$ phase in the microstructure of Al-Mg alloy were increased as the Mg and Si contents were raised from 2.5 to 3.5 wt%. With Si content of 1.5 wt%, freezing range of the alloy was significantly reduced and solidification became more complex during the final stage of solidification. While there was no significant influence of Mg contents on mechanical properties, Si contents up to 1.5 wt%, strongly affected the mechanical properties. Especially elongation was reduced by about a half with more than 1.0 wt%Si in the alloy. The bending and impact strength were decreased with increased amount of Si in the alloy, as well. The lowered mechanical properties are because of the growth of particle shaped coarse $Mg_2Si$ phase and precipitation of the needle like $\beta$-AlFeSi in the microstructure at the last region to solidify due to presence of excess amount of Si in the alloy.

듀오캐스트 Al-Mg-Si/Al 하이브리드 합금의 미세조직과 기계적 변형 특성 (Microstructure and Mechanical Behavior of Al-Mg-Si/Al Hybrid Alloy by Duo-casting)

  • 한지민;김종호;박준표;장시영
    • 한국주조공학회지
    • /
    • 제32권6호
    • /
    • pp.269-275
    • /
    • 2012
  • Al-Mg-Si/Al hybrid alloy was prepared by Duo-casting and the mechanical behavior was evaluated based on their microstructure and mechanical properties. The hybrid aluminum alloy included the Al-Mg-Si alloy with fine eutectic structure, pure Al with the columnar and equiaxed crystals, and the macro-interface existing between Al-Mg-Si alloy and pure Al. The growth of columnar grains in pure Al occurred from the macro-interface. The tensile strength, 0.2% proof stress and bending strength of the hybrid aluminum alloy were almost similar to those of pure Al, and the elongation was much higher than the Al-Mg-Si alloy. The fracture of the hybrid alloy took place in pure Al side, indicating that the macro-interface was well bonded and the mechanical behavior strongly depends on the limited deformation in pure Al side.

합금원소 Si, Mn, Zn 첨가에 따른 Al-Mg 합금의 유동도 및 기계적 성질 변화 (Variation of Fluidity and Mechanical Properties of Al-Mg Alloys with the Addition of Si, Mn, and Zn)

  • 김정민;성기덕;전중환;김기태;정운재
    • 한국주조공학회지
    • /
    • 제24권3호
    • /
    • pp.138-144
    • /
    • 2004
  • Effects of alloying elements such as Si, Mn, Zn on the fluidity and mechanical properties of high ductility Al-Mg based alloys were investigated. The fluidity of alloys was evaluated using a vacuum suction fluidity test, and Si addition was observed to increase the fluidity of AI-Mg binary alloys substantially while Zn somewhat decreased the fluidity. However, both the strength and ductility were significantly deteriorated by the Si additions. It was observed that a small amount of Mn addition to Al-Mg alloy increased the tensile strength effectively without losing much ductility but the effect of Zn addition on the strength was relatively small.

Al-합금의 원소가 용융산화에 미치는 영향(ll. 산화층 형상과 미세구조) (The Effects of Al-Alloying Elements on the Melt Oxidation(II, Oxide Layer Shape and Microstructure))

  • 조창현;강정윤;김일수;김철수;김창욱
    • 한국재료학회지
    • /
    • 제7권8호
    • /
    • pp.660-667
    • /
    • 1997
  • AI-Mg-합금의 용융산화에 의해 생성되는 AlO$_{2}$O$_{3}$-복합재료의 미세구조에 미치는 합금원소의 영향을 연구하였다. AI-1Mg 합금과 AI-3Mg 합금을 기본으로하여 Si, Zn, Sn, Cu, Ni, Ca, Ce를 1, 3, 5 %를 무게비로 첨가하였다. 각 합금을 1473K에서 20시간 유지하여 산화시킨 후 산화층의 거시적 형상과 미세구조를 광학현미경으로 관찰하였다. 각 미세구조의 상분율을 상분석기로 측정하였다. 산화층의 최첨단면은 SEM과 EDX로 관찰하고 분석하였다. Cu나 Ni를 첨가한 합금으로부터 성장한 산화층의 미세구조가 가장 치밀하였다. Zn이 포함된 합금으로부터 성장한 산화층 최첨단 성장면에는 ZnO가 관찰되었다. Zn이 포함되지 않은 다른 합금의 성장 전면에는 항상 MgAi$_{2}$O$_{4}$상이 관찰되었다.

  • PDF