• Title/Summary/Keyword: Al-Si coated

Search Result 192, Processing Time 0.029 seconds

Microstructure and Corrosion Characteristics of Al-Si Diffusion Coated Ni Base Super alloy (Al-Si확산코팅에 따른 Ni기 초합금의 미세조직과 부식특성)

  • 안종천;김택수;윤동주;이경구
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.100-108
    • /
    • 1999
  • The microstructure and corrosion properties of Al-Si diffusion coated PWA1426 alloy have been investigated. Experimental variables are included temperatures of heat-treatment and coating thickness. The microstructure of coated layer and corrosion properties were analysed by SEM, EDS and hot corrosion test. Two major processes have been found to contribute to microstructural changes in the coating. These are, firstly, the transformation of the NiAl to other $Ni_2Al_3$-based phase and secondly, the precipitation of Cr containing phases. Specimens heat treated at $1080^{\circ}C$ showed superior corrosion resistance to heat treated at $880^{\circ}C$. These increase in life was attributed to the transformation of NiAl and increased coating thickness of PWA1426 alloy.

  • PDF

ADHESION STRENGTH OF DIAMOND COATED WC-Co TOOLS USING MICROWAVE PLASMA CVD

  • Kiyama, Nobumichi;Sakamoto, Yukihiro;Takaya, Matsufumi
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.540-544
    • /
    • 1996
  • To apply the CVD diamond film to coated tools, it is necessary to make adhesion strength between diamond film and substrate stronger. So adhesion strength of diamond coated WC-Co tools using Microwave Plasma CVD and cutting test of Al-18mass%Si alloy using diamond cutting tools were studied. Diamond coating was carried out using Microwave Plasma CVD apparatus. Reaction gas was used mixture of methane and hydrogen. Substrate temperature were varied from 673K to 1173K by control of microwave output power and reaction pressure. By observation of SEM, grain size became larger and larger as substrate temperature became higher and higher. Also all deposits were covered with clear diamond crystals. XRD results, the deposits were identified to cubic diamond. An analysis using Raman spectroscopy, the deposit synthesized at lower substrate temperature (673K) showed higher quality than deposit synthesized at higher substrate temperature (1173K). As a result of scratch adhesion strength test, from 873K to 1173K adhesion strength decreased by rising of substrate temperature. The deposit synthesized at 873K showed best adhesion strength. In the cutting test of Al-18mass%Si alloy using diamond coated tools and the surface machinability of Al-Si works turned with diamond coating tools which synthesized at 873K presented uniform roughness. Cutting performance of Al-18mass%Si alloys using diamond coated WC-Co tools related to the adhesion strength.

  • PDF

Plasma resistance of Bi-Al-Si-O and Bi-Al-Si-O-F glass coating film (Bi-Al-Si-O와 Bi-Al-Si-O-F 유리 코팅막의 플라즈마 저항성)

  • Sung Hyun Woo;Jihun Jung;Jung Heon Lee;Hyeong-Jun Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.4
    • /
    • pp.131-138
    • /
    • 2024
  • In this study, the microstructure and plasma resistance characteristics of 35Bi2O3-15Al2O3-50SiO2 (BiAl SiO) and 35Bi2O3-7.5Al2O3-50SiO2-7.5AlF3 (BiAlSiOF) glass layers coated on sintered alumina substrates were investigated according to the sintering conditions. The coated layers were formed using the bar coating method and then sintered at a temperature in the range of 700~900℃, which corresponds to the temperature before and after the hemisphere forming temperature, after a debinding process. The plasma resistance of the two coated glasses was approximately 2~3 times higher than that of the quartz glass, and in particular, the BiAlSiOF glass film with F added showed higher plasma resistance than BiAlSiO. It is thought to be due to the effect of suppressing the reaction with fluorine gas by adding fluorine to the glass. When the sintering time was increased at 700℃ and 800℃, the plasma resistance of both glasses improved, but when the sintering temperature was increased to 900℃, the plasma resistance decreased again (i.e., the etching rate increased). This phenomenon is thought to be related to the crystallization behavior of both glasses. The change in plasma resistance depending on the sintering conditions is thought to be related to the appearance of Al and Bi-rich phases.

A Study on Laser Weldability of Al-Si Coated 22MnB5 Steel for TWB Hot Stamping (Al-Si 도금된 22MnB5강의 핫스탬핑 TWB 적용을 위한 레이저용접성 고찰)

  • Kim, Yong;Park, Ki-Young;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.30-36
    • /
    • 2013
  • Recently the use of ultra high strength steels(UHSS) in structural and safety component is rapidly increasing in the automotive industry. Furthermore, it commonly use in tailor welded blank laser welding process before hot stamping to reduce lightweight vehicle. However TWB process is to be a problem about welded strength after hot stamping because it's welded before heat treatment. Therefore, in this study, laser welds of TWB after heat treatment were analyzed for changes in the characteristics, especially the impact on the oxidation and decarburization in order to prevent pre-coated Al-Si layer welds on the properties for intensive investigation. As a result, the degradation of the TWB weldments changes in the heat treatment conditions alone, without any pre-treatment of the coating layer has confirmed that there is a limitation on the improvement. Furthermore Al-Si elements are overall distributed on the weldment and it specially concentrated along the fusion line. Hardness value of Al-Si segregation area is less than 350Hv and tensile strength showed just 78~83% compared with substrate. Accordingly, we proved that both side Al-Si coating should be removed in order to ensure the strength of the substrate.

Hot-dipped Al-Mg-Si Coating Steel - Its Structure, Electrochemical and Mechanical Properties -

  • Tsuru, Tooru
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.233-238
    • /
    • 2010
  • Hot-dipped Al-Mg-Si coatings to alternate Zn and Zn alloy coatings for steel were examined on metallographic structure, corrosion resistance, sacrificial ability, formation and growth of inter-metallic compounds, and mechanical properties. Near the eutectic composition of quasi-binary system of Al-$Mg_2Si$, very fine eutectic structure of ${\alpha}$-Al and $Mg_2Si$ was obtained and it showed excellent corrosion resistivity and sacrificial ability for a steel in sodium chloride solutions. Formation and growth of Al-Fe inter-metallic compounds at the interface of substrate steel and coated layer was suppressed by addition of Si. The inter-metallic compounds layer was usually brittle, however, the coating layer did not peel off as long as the thickness of the inter-metallic compounds layer was small enough. During sacrificial protection of a steel, amount of hydrogen into the steel was more than ten times smaller than that of Zn coated steel, suggesting to prevent hydrogen embrittlement. Al-Mg-Si coating is expected to apply for several kinds of high strength steels.

Multi-layer Coating for Improvement Anti-wear Property of Graphite (흑연의 내마모성 증진을 위한 다층 코팅)

  • Suh, Im-Choon;Kim, Dong-Il;Yeh, Byung-Hahn;Jung, Bahl;Park, Chong-Ook
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.8
    • /
    • pp.874-878
    • /
    • 1994
  • To increase the anti-oxidation and anti-wear properties of graphite for the propellant-burning environment, SiC, Pt and Al2O3 multi-layer coatings were conducted succesisvely and the optimum condition was researched. The SiC layer was produced by pack cementation and SiC layer in thickness of 30 ${\mu}{\textrm}{m}$ coating was produced after coating for 6 hours. Pt layer was coated by sputtering, and the Al2O3 layer was coated by reactive sputtering. the thickness of Pt layer and Al2O3 layer was less than one-tenth of that of SiC layer. The pack coated specimens and multi-layer coated specimens were made using above conditions and test-fired. The test result showed that the wear rate of SiC layer is approximately 1/10 compared to that of uncoated graphite.

  • PDF

The Cathodoluminance Properties of ${Y_2}{SiO_5}:Ce$ Blue Phosphor with Surface Coatings (${Y_2}{SiO_5}:Ce$ 청색 형광체의 표면 코팅에 따른 음극선 발광특성)

  • Kim, Seong-U;Lee, Im-Ryeol
    • Korean Journal of Materials Research
    • /
    • v.10 no.8
    • /
    • pp.558-563
    • /
    • 2000
  • $Y_2SiO_5:Ce$ phosphor was coated with $In_2O_3$, $Al_2O_3$ and $SiO_2$ and then their cathodoluminance(CL)proper-ties required in field emission display were investigated. It was found that luminance efficiency and aging p개perty of $Y_2SiO_5:Ce$ phosphor was decreased with $In_2O_3$coating. For the case of coating, the luminance intensity was in blue phosphor was dramatically increased with $SiO_2$ coating. And also the aging property of $Y_2SiO_5:Ce$ Phosphor coated with $SiO_2$ was significantly improved compared to non-coated sample.

  • PDF

Accelerated and Outdoor Exposure Tests of Aluminum Coated Steel Sheets

  • Kim, Jongmin;Lee, Jaemin;Lim, Sangkyu;Jung, Choonho
    • Corrosion Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.199-204
    • /
    • 2011
  • Hot dip metallic coated steels like as galvanized (GI), zinc-aluminium (GL) and aluminium coated steels are mostly used where corrosion resistance is needed. There are two kinds (type 1 and type 2) of aluminium coated steel being commercially used among them. Type 1 aluminium coated steel is coated with an Al-5~11 wt%Si alloy and Type 2 aluminium coated steel consists of commercially pure aluminium. Type 1 Al coated steel is generally used in automotive components and electrical appliances while type 2 aluminium coated steel is mainly used in construction applications such as building cladding panels, air conditioning and ventilation system. In this study, Type 1 aluminium coated steels have tested by accelerated conditions (salt spray or corrosive gas) and outdoor exposure condition in order to understand their corrosion behaviour. Due to the distinct corrosion mechanism of Al which exposes to the severe chloric condition, Salt Spray Test cannot predict the ordinary atmospheric corrosion of Al based coated materials. In addition, the test results and their corrosion feature of Al coated steel sheets will be discussed comparing with other metallic coated steel sheets of GI and GL.

The Effect of Mechanical Property of Tailor Welding Blank and Hot Press Forming Process by the Different Anti-oxidation Coating Treatment on Boron-steel Sheet (핫프레스포밍 공정에서 내산화 코팅처리가 TWB 용접부 특성에 미치는 영향)

  • Kim, Sang-Gweon;Lim, Ok-Dong;Lee, Jae-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.6
    • /
    • pp.283-291
    • /
    • 2012
  • In order to increase the anti-oxidation property during the tailor welding blanked hot press forming process for a high strength boron steel sheet, we performed a different coating method on the boron-steel sheet such as 87% Al - 13% Si and Fe - 8.87 Zn dipping plating procedure. However, during laser welding process, the Al-Si coated steel sheet has showed a low tensile strength and about half value of elongation than the original boron-steel sheet. Aluminum and silicon, elements of coating layer were diffused into the boron-steel matrix and have shown a low strength result than non-coated specimen. On the other hand, Zinc-coated boron-steel has expectedly showed a excellent tensile strength and micro-harness value in the welded area like original boron-steel.

Coating Layer Behavior Analysis of Al-Si Coated Boron Steel in Hot Bending Process

  • Yang, Li;Kang, Chung-Gil
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.307-310
    • /
    • 2009
  • Nowadays, the usage of high strength steel has been growing in automobile industry mainly as structural parts since for its lightweight and high strength properties the oil crisis happened. Owing to poor formability, complex-shaped high-strength steel components are invariably produced through hot press forming. The high-strength steel sheets are in so me instances used with an Al-Si-coating with a view to prevent scaling of components during hot press forming. How ever, friction and fracture characteristics of Al-Si-coated high-strength steel during hot press forming process have not yet been investigated. In this paper, the formed parts which were formed in hot bending process were investigated by using EDS. SEM and nano indenter in order to analysis the coating layer behavior.

  • PDF