• Title/Summary/Keyword: Al-Si based alloy

Search Result 119, Processing Time 0.032 seconds

Effects of Cold Rolling Parameters on Sagging Behavior for Three Layer Al-Si/Al-Mn(Zn)/Al-Si Brazing Sheets

  • S.H. Lee;J.S. Yoon;M.S. Kim;D. Jung
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.227-227
    • /
    • 1999
  • The effects of intermediate annealing (IA) and the final cold rolling (CR) condition on the microstructure and sagging resistance during brazing were investigated using three layer clad sheets composed of the Al-7.5 wt.%Si alloy (filler, thickness: 10 ㎛)/Al-1.3 wt.%Mn based alloy (core, 80㎛)/Al-7.5 wt.%Si alloy (filler, 10㎛). Also, the effect of 1.2∼2 wt.% Zn addition into the core on the sagging resistance of the clad sheets was determined. It was revealed that all the clad sheets fabricated by the optimum condition (IA at 690 K and CR to 20∼45%) show excellent sagging resistance with a limited erosion due to the formation of a coarsely recrystallized grain structure in the core during brazing. It was also revealed that the recrystallization behavior of the Al-1.3 wt.%Mn based alloy is hardly affected by the addition of 1.2-2 wt.%Zn during the brazing cycle. Therefore, the sagging resistance of the clad sheets is found to be governed not by the Zn content added in the A1-1.3wt.%Mn based core, but by the intermediate annealing and final cold rolling condition.

Effect of Cu and Mg on Forging Property and Mechanical Behavior of Powder Forged Al-Si-Fe Based Alloy

  • Lee, Dong-Suk;Jung, Taek-Kyun;Kim, Mok-Soon;Kim, Won-Yong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1000-1001
    • /
    • 2006
  • Two atomized alloy powders were pre-compacted by cold and subsequently hot forged at temperatures ranging from 653K to 845K. The addition of Cu and Mg causes a decrease in the eutectic reaction temperature of Al-10Si-5Fe-1Zr alloy from 841K to 786K and results in a decrease of flow stress at the given forging temperature. TEM observation revealed that in addition to Al-Fe based intermetallics, $Al_2Cu$ and $Al_2CuMg$ intermetallics appeared. The volume fraction of intermetallic dispersoids increased by the addition of Cu and Mg. Compressive strength of the present alloys was closely related to the volume fraction of intermetallic dispersoids.

  • PDF

Coarsening Behavior of Fine Precipitates in Rapidly Quenched Al-Fe Based Alloy Ribbons by In-situ Heat Treatment (급랭응고한 Al-Fe 합금계 리본을 고온에 노출시킴에 따른 미세석출물의 성장거동)

  • Baik, Nam-Ik
    • Journal of Korea Foundry Society
    • /
    • v.15 no.3
    • /
    • pp.252-261
    • /
    • 1995
  • The purposes of this study were to investigate the microstructural changes in alloy ribbons of Al-Fe-Mo-Si quarternary system at $450{\sim}500^{\circ}C$, and to study the coarsening mechanism of fine precipitates. Using the hot stage in TEM, in situ microstructural changes in Al-4Fe-0.5Mo-1.5Si alloy ribbon and Al-8Fe-2Mo-1.5Si alloy ribbon have been examined successively up to 60 hours at $450^{\circ}C$ and $500^{\circ}C$. Cell structure in zone B of Al-4Fe-0.5Mo-1.5Si alloy ribbon was observed to collapse even in 10 minutes by in-situ heating at $450^{\circ}C$ and the size of precipitates in zone B increased twice in 60 hours. The precipitates in zone A of Al-4Fe-0.5Mo-1.5Si alloy ribbon showed slower coarsening rate than those in zone B by in-situ heating at $450^{\circ}C$. The precipitates in zone A of Al-8Fe-2Mo-1.5Si alloy ribbon increased 50% by in-situ heating at $500^{\circ}C$ in 50 hours compared to the initial precipitates while any microstructual change in zone B was not observed by in-situ heating at $500^{\circ}C$ up to 50 hours. Only the precipitates in zone A of Al-4Fe-0.5Mo-1.5Si alloy ribbon satisfied $r^3{\propto}t$ relationship of coarsening mechanism.

  • PDF

High Temperature Creep Deformation of Mechanically Alloyed Al-Ti-Si Alloy (기계적 합금법에 의한 Al-Ti-Si합금의 고온 크립 변형)

  • Choe, Cheol-Jin;Park, Won-Uk
    • 연구논문집
    • /
    • s.25
    • /
    • pp.169-173
    • /
    • 1995
  • The high temperature deformation of mechanically alloyed Al-Ti-Si alloy (Al-9.64wt% Ti-1.56wt% Si) was investigated by performing constant load compression creep tests over the temperature range of $673^\circC$K to $723^\circC$K. From the calculation based on the modified power law creep equation for dispersion strengthened alloy, the true creep activation energy, was 176kJ/mole, the true stress exponent was 4.9. Considering the value of activation energy, stress exponent, the shape of primary creep region, it could be concluded that creep deformation in the MA Al-Ti-Si alloy is controlled by dislocation climb.

  • PDF

Bi-materials of Al-Mg Alloy Reinforced with/without SiC and Al2O3 Particles; Processing and Mechanical Properties

  • Chang, Si-Young;Cho, Han-Gyoung;Kim, Yang-Do
    • Journal of Powder Materials
    • /
    • v.14 no.6
    • /
    • pp.354-361
    • /
    • 2007
  • The bi-materials with Al-Mg alloy and its composites reinforced with SiC and $Al_2O_3$ particles were prepared by conventional powder metallurgy method. The A1-5 wt%Mg and composite mixtures were compacted under $150{\sim}450\;MPa$, and then the mixtures compacted under 400 MPa were sintered at $773{\sim}1173K$ for 5h. The obtained bi-materials with Al-Mg/SiCp composite showed the higher relative density than those with $Al-Mg/Al_2O_3$ composite after compaction and sintering. Based on the results, the bi-materials compacted under 400 MPa and sintered at 873K for 5h were used for mechanical tests. In the composite side of bi-materials, the SiC particles were densely distributed compared to the $Al_2O_3$ particles. The bi-materials with Al-Mg/SiC composite showed the higher micro-hardness than those with $Al-Mg/Al_2O_3$ composite. The mechanical properties were evaluated by the compressive test. The bi-materials revealed almost the same value of 0.2% proof stress with Al-Mg alloy. Their compressive strength was lower than that of Al-Mg alloy. Moreover, impact absorbed energy of bi-materials was smaller than that of composite. However, the bi-materials with Al-Mg/SiCp composite particularly showed almost similar impact absorbed energy to $Al-Mg/Al_2O_3$ composite. From the observation of microstructure, it was deduced that the bi-materials was preferentially fractured through micro-interface between matrix and composite in the vicinity of macro-interface.

Crystallization Behavior and Electrochemical Properties of Si50Al30Fe20 Amorphous Alloys as Anode for Lithium Secondary Batteries Prepared by Rapidly Solidification Process (액체급랭응고법으로 제조된 리튬 이차전지 음극활물질용 Si50Al30Fe20 비정질 합금의 결정화 거동 및 전기화학적 특성)

  • Seo, Deok-Ho;Kim, Hyang-Yeon;Kim, Sung-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.341-348
    • /
    • 2019
  • This paper reports the microstructure and electrochemical properties of Si-Al-Fe ternary amorphous alloys prepared by rapid solidification as an anode for lithium secondary batteries. The microstructure was analyzed using XRD and HR-TEM with EDS mapping. In accordance with DSC analysis, annealing was performed to crystallize the active nano-Si in the amorphous alloy. Thus, nano-Si forms (~80 nm) embedded in the matrix alloy, such as $Fe_2Al_3Si_3$, $FeSi_2$, and $Fe_{0.42}Si_{2.67}$, were successfully synthesized. The electrode based on the Si-Al-Fe ternary alloy delivered an initial discharge capacity of approximately $700mAh^{g-1}$, and exhibited a high Coulombic efficiency of 99.0~99.6% from the $2^{nd}$ to $70^{th}$ cycles.

A Nanoindentation Based Study of Mechanical Properties of Al-Si-Cu-Mg Alloy Foam Cell Wall (나노인덴테이션에 의한 Al-Si-Cu-Mg 합금 폼 셀 벽의 기계적 물성 연구)

  • Ha, San;Kim, Am-Kee;Lee, Chang-Hun;Lee, Hak-Joo;Ko, Soon-Gyu;Cho, Seong-Seock
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.382-387
    • /
    • 2004
  • Nanoindentation technique has been used to measure the mechanical properties of aluminium alloy foam cell walls. Al-Si-Cu-Mg alloy foams of different compositions and different cell morphologies were produced using powder metallurgical method. Cell morphology of the foam was controlled during production by varying foaming time and temperature. Mechanical properties such as hardness and Young's modulus were calculated using two different methods: a continuous stiffness measurement (CSM) and an unloading stiffness measurement (USM) method. Experimental results showed that hardness and Young's modulus of Al-5%(wt.)Si-4%Cu-4%Mg (544 alloy) precursor and foam walls are higher than those of Al-3%Si-2%Cu-2%Mg (322 alloy) precursor and foam walls. It was noticed that mechanical properties of cell wall are different from those of precursor materials.

  • PDF

Microstructural Change and Magnetic Properties of Nanocrystalline Fe-Si-B-Nb-Cu Based Alloys Containing Minor Elements

  • Nam, Seul-Ki;Moon, Sun-Gyu;Sohn, Keun Yong;Park, Won-Wook
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.327-332
    • /
    • 2014
  • The effect of minor element additions (Ca, Al) on microstructural change and magnetic properties of Fe-Nb-Cu-Si-B alloy has been investigated, in this paper. The Fe-Si-B-Nb-Cu(-Ca-Al) alloys were prepared by arc melting in argon gas atmosphere. The alloy ribbons were fabricated by melt-spinning, and heat-treated under a nitrogen atmosphere at $520-570^{\circ}C$ for 1 h. The soft magnetic properties of the ribbon core were analyzed using the AC B-H meter. A differential scanning calorimetry (DSC) was used to examine the crystallization behavior of the amorphous alloy ribbon. The microstructure was observed by X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM). The addition of Ca increased the electrical resistivity to reduce the eddy current loss. And the addition of Al decreased the intrinsic magnetocrystalline anisotropy $K_1$ resulting in the increased permeability. The reduction in the size of the ${\alpha}$-Fe precipitates was observed in the alloys containing of Ca and Al. Based on the results, it can be concluded that the additions of Ca and Al notably improved the soft magnetic properties such as permeability, coercivity and core loss in the Fe-Nb-Cu-Si-B base nanocrystalline alloys.

The Effect of Alloying Elements on the Tensile Property of Al-Mg-Si Alloy (Al-Mg-Si계 합금의 인장 특성에 미치는 합금 원소의 영향)

  • Park J. H.;Kwon Y.-N.;Lee Y. S.;Kang S. W.;Lee B. G.;Lee J. B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.234-237
    • /
    • 2004
  • As an automotive industry's demand for lighter materials gets bigger and bigger, a lot of new strength Al alloys have been developed recently. In the present study, Al 6xxx series alloys were designed to get the strength level of 350MPa with the elongation of $12\%$. For that purpose, three alloy systems were selected based on the thermodynamics calculation. The effect of both $Mg_{2}Si$ precipitate and excess Si amount on the newly designed alloys was investigated. Also, heat treatment procedure was studied to optimize the mechanical properties.

  • PDF

Microstructure and Tensile Properties in Low Pressure Cast Al-Si Alloy through Cooling Rate Control

  • Suh, Jun-Young;Park, Sung Jin;Lee, Hee-Kwon;Chang, Si Young
    • Korean Journal of Materials Research
    • /
    • v.30 no.2
    • /
    • pp.51-56
    • /
    • 2020
  • In this study, three kinds of metal chills such as SS400, AC4CH and brass, with different thicknesses of 40 ~ 80 mm, were applied for low pressure casting of Al-Si alloy to control cooling rate. The microstructural characteristics with increasing cooling rate were represented using factors including D1, D2, size of primary α phases and shape factor and size of eutectic Si. The tensile properties were investigated and additionally analyzed based on the microstructural characteristics. As the cooling rate increased, D1, D2, and sizes of primary α phases and eutectic Si apparently decreased and the shape factor of eutectic Si increased to over 0.8. The ultimate tensile strength (UTS) and yield strength (YS) increased with decreasing D1, D2, and size of primary α phases, while elongation increased with decreasing size of eutectic Si and concurrently increasing shape factor of eutectic Si. This indicated that the primary α phases and eutectic Si in Al-Si alloy were refined with increasing cooling rate, resulting in improvement of UTS and YS without sacrificing elongation. After the tensile test, preferential deformation of primary α phases was observed in the Al-Si alloy produced at higher cooling rates of more than 0.1 K/s.