• Title/Summary/Keyword: Al-Mn alloy

Search Result 176, Processing Time 0.03 seconds

Effects of Extrusion Ratio and Extrusion Temperature on Microstructure and Tensile Properties of SEN6 Magnesium Alloy (SEN6 마그네슘합금의 미세조직과 인장 특성에 미치는 압출비와 압출 온도의 영향)

  • H. J. Kim;J. Y. Lee;S. C. Jin;S. H. Park
    • Transactions of Materials Processing
    • /
    • v.33 no.3
    • /
    • pp.178-184
    • /
    • 2024
  • In this study, we investigated the effects of extrusion ratio and extrusion temperature on the microstructure and tensile properties of extruded Mg-6Al-0.3Mn-0.3Ca-0.2Y (SEN6) alloy. As the extrusion ratio and temperature increase, dynamic recrystallization during extrusion is promoted, leading to the formation of a fully recrystallized microstructure with increased grain size. Additionally, the increases in extrusion ratio and temperature lead to texture strengthening, exhibiting a higher maximum texture intensity. The extruded materials contain three types of secondary phases, i.e., Al8Mn4Y, Al2Y, and Al2Ca, with irregular or polygonal shapes. The quantity, size, distribution, and area fraction of the second-phase particles are nearly identical between the two materials. Despite its larger grain size, the tensile yield strength of the material extruded at 450 ℃ and an extrusion ratio of 25 (450-25) is higher than that of the material extruded at 325 ℃ and an extrusion ratio of 10 (325-10), which is mainly attributed to the stronger texture hardening effect of the former. The ultimate tensile strength is similar in the two materials, owing to the higher work hardening rate in the 325-10 extrudate. Despite differences in grain size and recrystallization fraction, numerous twins are formed throughout the specimen during tensile deformation in both materials; consequently, the two materials exhibit nearly the same tensile elongation.

Magnetic properties of $FeAl_{1-x}Mn_x$ alloy systems ($FeAl_{1-x}Mn_x$합금계의 자기적 성질에 관한 연구)

  • Ko, Kowan-Young;Yoon, Sokeel;Park, Soon
    • Electrical & Electronic Materials
    • /
    • v.4 no.1
    • /
    • pp.1-11
    • /
    • 1991
  • 소둔 및 급속응고된 FeA $l_{1-x}$M $n_{x}$ (x=0.05, 0.10, 0.15, 1.20, 0.25, 0.30, 0.35, 0.40) 합금의 자기적 성질을 77.deg.K~750.deg.K의 온도범위에서 비교 분석하였다. 소둔한 시편의 경우, x.leq.0.25일때는 상자성, x=0.30 및 0.35의 경우에는 초상자성, x=0.40은 강자성을 나타내었다. 그리고 급속응고한 시편의 경우에는 전 조성범위에서 초상자성을 나타내었다. 그리고 Mn의 양이 증가함에 따라 자화는 소둔 및 급속응고 시편에서 증가하는 현상을 보였으며 급속응고 시편이 소둔시편에 비해 대개 더 높은 자화를 나타내었다. 본 합금계에 있어 자성에 대한 국부환경 효과를 분석하여 보았다.다.

  • PDF

Electronic Structures of half-metallic phase of ternary Fe_2TX (T = 3d transition metal and X = Al, Si) (절반금속 Fe_2TX 화합물의 전자구조 연구 (T = 3d 전이금속; X = Al, Si))

  • Park, Jin-Ho;Kwon, Se-Kyun;Byung ll Min
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.584-584
    • /
    • 2000
  • Electronic structures of ordered Fe$_3X (X = Al, Si), and their derivative ternary alloys of Fe_2TX (T = 3d transition metal) have been investigated by using the linearized muffin-tin orbital (LMTO) band method. The role of the coupling between substituted transition metal and its neighbors is investigated by calculating the magnetic moments and local density of states (LDOS). It is shown that it is essential to include the coupling beyond nearest neighbors in obtaining the magnetic moment of Fe alloy. The preferential sites of T impurities in Fe_3X are determined from the total energy calculations. The derivative ternary alloys of Fe_2TX have characteristic electronic structures of semi-metal for Fe_2VAI and (nearly) half-metal for Fe_2TAI (T = Cr, Mn) and Fe_2TSi (T = V, Cr, Mn)

  • PDF

Electrochemical Corrosion Characteristics of the Iron-based Damping Alloy (철기제진합금의 전기화학적 부식특성)

  • Shim, Hyun Yee;Jee, Choong Soo;Lee, Jin Hyung;Lee, Kyu Hwan;Shin, Myung Chul
    • Analytical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.85-90
    • /
    • 1995
  • Corrosion characteristics of 4 kinds of the Fe-Al damping alloys has been studied in the 3.5% NaCl solution and compared with a cold rolled mild steel and pure Ti, No passivation, besides Ti, was observed in the Fe-Al damping alloys and a cold rolled mild steel. Corrosion rate was decreased with lower carbon concentration. In the case of Mn addition for improving damping capacity, corrosion rate was decreased in scrap iron but was not decreased in electrolytic iron. It has been shown that corrosion rate of Fe-Al damping alloys lays between that of the pure Ti and that of a cold rolled mild steel.

  • PDF

Purification of Waste Acid and Manufacture of Complex Oxide and Mn-Ferrite Powder by Co-Roasting Process (폐산의 정제 기술 및 분무 배소법에 의한 복합 산화물과 Mn-Ferrite 분말의 제조)

  • 유재근;김정석;민병구;성낙일
    • Resources Recycling
    • /
    • v.7 no.4
    • /
    • pp.64-75
    • /
    • 1998
  • The purpose of this study is to produce high putity composite powder composed of Fe-oxide, Mn-oxide and Mn-ferrite having superior homogencity in composition and particle size distribution by co-roasting process. Binary component metal (Fe, Mn) chloride solutions were produced by dissolving mill scale and ferro-mangancse alloy in hydrochloric acid. These chloride solutions contained the impurities such as SiO$_{2}$, P, Al, Ca and Na, which were originated from the Fe/Mn source materials. The neutralization and polymeric coagulant method were adoped to refine the hydrochloric liquor. When pH is far below the isoelectric point (pH 2-3), the SiO$_{2}$ was the most effectively reduced element, while other impurities remained unchanged. By increasing pH above 3, most of the impurities could be reduced effectively due to the coprecipitation reaction. The polymeric coagulants such as poly vinyl alcohol, resin amine and ammonium molybdate were found to have no effect on the spray roaster designed by the authors. The produced oxide powders were confirmed to be mixtures of Fe-oxide, Mn-oxide and mn-ferrite. the powders were homogeneously mixed and the particle size increased sleeply with increasing co-roasting temperature.

  • PDF

The use of Thermodynamics and Phase Equilibria for Prediction of the Behavior of High Temperature Corrosion of Alloy 617 in Impure Helium Environment

  • Kim, Dong-Jin;Lee, Gyeong-Geun;Kim, Sung-Woo;Kim, Hong-Pyo
    • Corrosion Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.164-170
    • /
    • 2010
  • Thermodynamic consideration was performed for Alloy 617 exposed to an impure helium ($H_2$ 20pa, $H_2O$ 0.5pa, $CH_4$ 2pa and CO 5pa) at $950^{\circ}C$. Oxidation power was decreased in the order Al > Ti > Si > Cr > Mn. Decarburization and carburization reactions were available leading to carbon activity decrease and increase, respectively, depending on carbon and Cr activities. The thermodynamic prediction was compared with the experimental results obtained in similar conditions (($H_2$ 20pa, $H_2O$ 0.05pa, $CH_4$ 5pa and CO 2pa) and $950^{\circ}C$) by others for Alloy 617. The driving force for oxidation of Al, Ti and Si is very large to be oxidized at a given impure helium and the environment is actually carburizing towards the structural alloy, which is consistent with this work.

An Investigation on the Microstructure Evolution and Tensile Property in the Weld Heat-Affected Zone of Austenitic FeMnAlC Lightweight Steels (오스테나이트계 FeMnAlC 경량철강의 용접열영향부 미세조직 변화 및 인장특성에 관한 연구)

  • Moon, Joonoh;Park, Seong-Jun
    • Journal of Welding and Joining
    • /
    • v.35 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • IMicrostructure evolution and tensile property in the weld heat-affected zone (HAZ) of austenitic Fe-30Mn-9Al-0.9C lightweight steels were investigated. Five alloys with different V and Nb content were prepared by vacuum induction melting and hot rolling process. The HAZ samples were simulated by a Gleeble simulator with welding condition of 300kJ/cm heat input and HAZ peak temperatures of $1150^{\circ}C$ and $1250^{\circ}C$. Microstructures of base steels and HAZ samples were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and their mechanical properties were evaluated by tensile tests. The addition of V and Nb formed fine V and/or Nb-rich carbides, and these carbides increased tensile and yield strength of base steels by grain refinement and precipitation hardening. During thermal cycle for HAZ simulation, the grain growth occurred and the ordered carbide (${\kappa}-carbide$) formed in the HAZs. The yield strength of HAZ samples (HAZ 1) simulated in $1150^{\circ}C$ peak temperature was higher as compared to the base steel due to the formation of ${\kappa}-carbide$, while the yield strength of the HAZ samples (HAZ 2) simulated in $1250^{\circ}C$ decreased as compared to HAZ 1 due to the excessive grain growth.

Real-time Observation and Analysis of Solidification Sequence of Fe-Rich Al-Si-Cu Casting Alloy by Synchrotron X-ray Radiography (가속 방사광을 활용한 Fe함유 Al-Si-Cu 주조용 합금의 응고과정 실시간 관찰 및 분석)

  • Kim, Bong-Hwan;Lee, Sang-Hwan;Yasuda, Hideyuki;Lee, Sang-Mok
    • Journal of Korea Foundry Society
    • /
    • v.30 no.3
    • /
    • pp.100-110
    • /
    • 2010
  • The solidification sequence and formation of intermetallic phase of Fe-rich Al-Si-Cu alloy were investigated by using real-time imaging of synchrotron X-ray radiation. Effects of cooling rate during uni-directional solidification on the resultant solidification behavior was also studied in a specially constructed vacuum chamber in the SPring-8 facility. The series of radiographic images were complementarily analyzed with conventional analysis of OM and SEM/EDX for phase identification. Detailed solidification sequence and formation mechanisms of various phases were discussed based on real-time image analysis. The growth rates of $\alpha$-AlFeMnSi and ${\beta}-Al_5FeSi$ were measured in order to understand the growth behavior of each phase. It is suggested that real-time imaging technique can be a powerful tool for the precise understanding of solidification behavior of various industrial materials.