• Title/Summary/Keyword: Al-Mg-Zn alloy

Search Result 184, Processing Time 0.024 seconds

Replacements for Chromate Pigments in Anticorrosion Primers for Aluminum Alloys

  • Yin, Zhangzhang;Ooij, Wim van;Puomi, Paula
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.206-210
    • /
    • 2007
  • Aerospace aluminum alloys such as Al alloy 2024-T3 and 7075-T6 are subject to localized corrosion due the existence of intermetallics containing Cu, Mg or Zn. Chromate is currently widely used in the aerospace industry as the corrosion inhibitor for these alloys. However, chromate needs to be replaced due to its strong carcinogenicity. In this study, an extensive pigment screening has been performed to find replacements for chromates. Different categories of inhibitors were evaluated by immersion tests, DC polarization tests and other methods. Phosphates, zinc salts, cerium salts, vanadates and benzotriazole were found to be effective inhibitors for AA7075. Among those inhibitors, zinc phosphate was found to be the most effective in our novel, silane-based, one-step aqueous primer system. The performance of this primer is comparable to that of currently used chromate primers in accelerated corrosion tests, while it is completely chromate-free and its VOC is about 80% less than that of current primers. Studies by SEM/EDS showed that the unique structure of the superprimer accounts for the strong anti-corrosion performance of the zinc phosphate pigment. The self-assembled stratified double-layer structure of the superprimer is characterized by a less-penetrable hydrophobic layer at the top and a hydrophilic layer accommodating the inhibitors underneath. The top layer functions as the physical barrier against water ingress, while the lower layer functions as a reservoirfor the inhibitor, which is leached out only if the coating is damaged by a scratch or scribe. The presence of a silane in the primer further improves the adhesion and anti-corrosion performance of the primer.

Controlled Surface Functionalities of metals using Femtosecond Laser-induced Nano- and Micro-scale Surface Structures (펨토초 레이저 유도 나노 및 마이크로 구조물을 활용한 금속 표면 기능성 제어)

  • Taehoon Park;Hyo Soo Lee;Hai Joong Lee;Taek Yong Hwang
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.55-61
    • /
    • 2023
  • With femtosecond (fs) laser pulse irradiation on metals, various types of nano- and micro-scale structures can be naturally induced at the surface through laser-matter interaction. Two notable structures are laser-induced periodic surface structures (LIPSSs) and cone/spike structures, which are known to significantly modify the optical and physical properties of metal surfaces. In this work, we irradiate fs laser pulses onto various types of metals, cold-rolled steel, pickled & oiled steel, Fe-18Cr-8Ni alloy, Zn-Mg-Al alloy coated steel, and pure Cu which can be useful for precise molding and imprinting processes, and adjust the morphological profiles of LIPSSs and cone/spike structures for clear structural coloration and a larger range of surface wettability control, respectively, by changing the fluence of laser and the speed of raster scan. The periods of LIPSSs on metals used in our experiments are nearly independent of laser fluence. Accordingly, the structural coloration of the surface with LIPSSs can be optimized with the morphological profile of LIPSSs, controlled only by the speed of the raster scan once the laser fluence is determined for each metal sample. However, different from LIPSSs, we demonstrate that the morphological profiles of the cone/spike structures, including their size, shape, and density, can be manipulated with both the laser fluence and the raster scan speed to increase a change in the contact angle. By injection molding and imprinting processes, it is expected that fs laser-induced surface structures on metals can be replicated to the plastic surfaces and potentially beneficial to control the optical and wetting properties of the surface of injection molded and imprinted products.

Effect of Alloying Elements on Particulate Dispersion Behavior and Mechanical Properties in TiC Particulate Reinforced Magnesium Matrix Composites (TiC 입자강화 Mg 복합재료에 있어서 입자 분산거동 및 기계적 성질에 미치는 합금원소의 영향)

  • Lim, Suk-Won;Choh, Takao;Park, Yong-Jin
    • Journal of Korea Foundry Society
    • /
    • v.14 no.3
    • /
    • pp.240-247
    • /
    • 1994
  • TiC particulate reinforced magnesium matrix composites were fabricated by melt stirring method. The effect of alloying elements on TiC particulate dispersion into molten magnesium and mechanical properties were investigated. The incorporation time is defined as the time required for dispersion of solid particles into molten metal. The incorporation time of TiC particles into molten pure magnesium was remarkably shorter and the particulated dispersion was more uniform than that of pure aluminum which was reported previously. The incorporation time was, prolonged by the addition of Al, Bi, Ca, Ce, Pb, Sn or Zn. The tensile strength increased and elongation decreased by the addition of Cu or Sn into the matrices and composites. Although, the tensile strength of the matrices and composites increased by alloying with Ca or Ce, the maximum elongation was observed at a content of about 1% for the matrices. By alloying with Zn, the tensile strength increased for the matrices and composites, but the elongation of the matrices increased. The pure magnesium and its alloy matrix composites reinforced with 20vol% TiC have the tensile strength of about 400MPa. This value is compared with the tensile strength of SiC whisker reinforced magnesium matrix composites fabricated by liquid infiltration method at the same volume fraction. There fore, the melt strirring method which has the advantages of simple process is considered to be efficient in fabricating magnesium matrix composites.

  • PDF

The study on the quality characteristics factor of medium-sized orbit scroll (중형 선회 스크롤의 품질 특성 인자에 대한 연구)

  • Kim, Jae-Gi;Lim, Jeng-Taek;Kang, Soon-Kook;Park, Jong-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.718-723
    • /
    • 2016
  • The use of the scroll compressor in the air conditioning of medium-sized vehicles has increased because of its low torque fluctuation, high energy efficiency and low noise. In addition, the main components of the compressor have been changed from steel to aluminum to reduce its weight, following studies on the constituent materials. The processing precision of the fixed scroll and orbiting involute scroll wrap of the scroll compressor must be below $10{\mu}m$. To ensure this, the surface roughness and contour tolerance are measured. To improve the hardness of the orbiting scrolls using aluminum subjected to anodizing treatment and as the base material, we used a sealing treatment and measured the resulting characteristics. The aluminum materials were made of an Al-Mg-Cu based alloy including small amounts of Ni, Fe, and Zn. The surface roughness was less than $3{\mu}m$ and the processing accuracy was within $10{\mu}m$. Also, the hardness of the nanodiamonds with CNTs used in the sealing treatment was more than 450. This was found to improve the hardness of the material by 50% or more compared to the water sealing treatment and there was little difference between the use of carbon nanotubes and nanodiamonds as sealing materials.