• Title/Summary/Keyword: Al-Mg-Zn

Search Result 552, Processing Time 0.026 seconds

Effects of Alloying Elements on the Properties of High Strength and High Thermal Conductivity Al-Zn-Mg-Fe Alloy for Die Casting (다이캐스팅용 Al-Zn-Mg-Fe 합금의 특성에 미치는 Zn 및 Mg 첨가의 영향)

  • Kim, Ki-Tae;Lim, Young-Suk;Shin, Je-Sik;Ko, Se-Hyun;Kim, Jeong-Min
    • Journal of Korea Foundry Society
    • /
    • v.33 no.4
    • /
    • pp.171-180
    • /
    • 2013
  • The effects of alloying elements on the solidification characteristics, microstructure, thermal conductivity, and tensile strength of Al-Zn-Mg-Fe alloys were investigated for the development of high strength and high thermal conductivity aluminium alloy for die casting. The amounts of Zn and Mg in Al-Zn-Mg-Fe alloys had little effect on the liquidus/solidus temperature, the latent heat for solidification, the energy release for solidification and the fluidity of Al-Zn-Mg-Fe alloys. Thermo-physical modelling of Al-Zn-Mg-Fe alloys by the JMatPro program showed $MgZn_2$, AlCuMgZn and $Al_3Fe$ phases in the microstructure of the alloys. Increased amounts of Mg in Al-Zn-Mg-Fe alloys resulted in phase transformation, such as $MgZn_2{\Rightarrow}MgZn_2+AlCuMgZn{\Rightarrow}AlCuMgZn$ in the microstructure of the alloys. Increased amounts of Zn and Mg in Al-Zn-Mg-Fe alloys resulted in a gradual reduction of the thermal conductivity of the alloys. Increased amounts of Zn and Mg in Al-Zn-Mg-Fe alloys had little effect on the tensile strength of the alloys.

A study of galvanic characteristics of aluminium alloy anode in the Al-Zn-In-Mg system made of the low purity aluminium ingot (저순도 Al지금을 사용한 Al-Zn-In-Mg계 Al합금 유전양극의 특성에 관한 연구)

  • 김원녕;김기준;김영대
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.240-249
    • /
    • 1985
  • This paper presents the results of the galvanic anode's characteristicsin the Al-Zn-In-Mg and Al-Zn-In-Mg system anodes used aluminium ingot of low purity, 99.5% grade. The results of thses performance tests are as follows: 1) Zn, In and Mg are an available elements to improve the performance of Aluminium alloy anodes. 2) When the range of zinc content in the Al-Zn-In-Mg system anode is 2-5% the more zinc content, the more improve the anode performance. 3) Al-Zn-In-Mg system anode requires a long term over 50 days for the performance test. 4) The composition of Al-Zn-In-Mg system anode which shows the most excellent performance is Al-(2-3%) Zn-(0.02%) In-(1.0%) Mg. 5) When the Al-Zn-In-Mg system anode is annealed for an hour in 500 to 550 .deg. C, the anode performance is improved. 6) The lower average potential and the better corrosion pattern in the Al-Zn-Mg, Al-Zn-In and Al-Zn-In-Mg system anodes, the more current efficiency is improved.

  • PDF

Distribution Behavior of Solute Element in Al-Mg-Zn Alloy Continuous Cast Billet During Homogenization Treatment (Al-Mg-Zn계 알루미늄 합금 연주 빌렛 균질화처리과정 중 용질원소 거동변화)

  • Myoung-Gyun Kim
    • Journal of Korea Foundry Society
    • /
    • v.43 no.6
    • /
    • pp.286-293
    • /
    • 2023
  • In this study, we investigated the microstructural evolution of Al-Mg-Zn aluminum alloy billet during homogenization treatment using OM, SEM, EDS and DSC. There were numerous phases found, such as; AlMgZn, AlMgFe, and AlMgZnSi phases, in the grain of the cast billet. After 6 hours homogenization treatment, Zn was mostly dissolved, whereas, Mg and Si were only partly dissolved. Accordingly, only AlMgFe and AlMgSi remained. After 18 hours, all of the leftover Mg and Si were dissolved, leaving only AlMgFe, which was also found after 24 hours. The results of the alloy design program, JMatPro showed that Mg dissloved more rapidly than Zn. According to the homogenization kinetic equation, Mg and Zn are completely dissolved within 1.9 and 3.5 hours, respectively.

Effects of Zn Amounts on the Castability and Tensile Properties of Al-Zn-Mg-Cu Alloys for Die Casting (Al-Zn-Mg-Cu 다이캐스팅용 합금의 주조성 및 인장특성에 미치는 Zn 첨가량의 영향)

  • Kim, Ki-Tae;Yang, Jae-Hak;Lim, Young-Suk
    • Journal of Korea Foundry Society
    • /
    • v.30 no.4
    • /
    • pp.137-141
    • /
    • 2010
  • The effects of Zn amounts on the castability and tensile properties of Al-Zn-Mg-Cu alloys were investigated for development of high strength die casting aluminium alloys. Al-Zn-Mg-Cu alloys with 3.5% Zn showed high cast cracking tendency and poor mold filling behaviour. Al-Zn-Mg-Cu alloys with 5wt% Zn and 7wt% Zn had the tensile strengths of 300~400MPa and the elongations of 2~18%. The effect of Zn on the tensile strength of Al-Zn-Mg-Cu alloys was insignificant, but Al-Zn-Mg-Cu alloy with high Zn amount had lower elongation.

Corrosion behavior of Zn-MgZn2 Eutectic Structure in Zn-Mg-Al alloy coated steel (Zn-Mg-Al 합금도금강판의 Zn-MgZn2 공정조직의 부식거동)

  • Lee, Jae-Won;Son, Hong-Gyun;Min, Jae-Gyu;Yu, Yeong-Ran;Gwak, Yeong-Jin;Kim, Tae-Yeop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.280-280
    • /
    • 2012
  • Mg의 첨가한 Zn-Mg-Al 합금도금강판에 형성된 $Zn-MgZn_2$ 공정조직의 부식거동을 이해하고자 진공 고주파 용해로 $MgZn_2$ 제작한 후 Zn와 galvanic coupling하여 $MgZn_2$합금과 Zn간의 galvanic corrosion 거동을 알아보았다. $MgZn_2-Zn$ galvanic coupling의 SVET 결과에서 $MgZn_2$가 anode, Zn가 cathode가 됨을 확인되었다. $MgZn_2$의 Zn와의 galvanic corrosion 평가에서 galvanic current는 Zn 보다 낮은 potential에서 anodic current density를 나타내었으며, galvanic potential은 $MgZn_2$전위로부터 두 합금의 혼합전위를 향해 증가함을 알 수 있었다. Zn-Mg-Al 합금도금강판의 염수분무 평가에서도 초기 $Zn-MgZn_2$ 공정조직에서 $MgZn_2$가 용출되는 것이 관찰되었다.

  • PDF

Effects of Zn and Mg Amounts on the Properties of High Thermal Conductivity Al-Zn-Mg-Fe Alloys for Die Casting (다이캐스팅용 고열전도도 Al-Zn-Mg-Fe 합금의 특성에 미치는 Zn 및 Mg 첨가량의 영향)

  • Kim, Ki-Tae;Lim, Young-Suk;Shin, Je-Sik;Ko, Se-Hyun;Kim, Jeong-Min
    • Journal of Korea Foundry Society
    • /
    • v.33 no.3
    • /
    • pp.113-121
    • /
    • 2013
  • The effects of Zn and Mg amounts on the solidification characteristics, microstructure, thermal conductivity and tensile strength of Al-Zn-Mg-Fe alloys were investigated for the development of high thermal conductivity aluminium alloys for die casting. Zn and Mg amounts in Al-Zn-Mg-Fe alloys had a little effect on the liquidus / solidus temperature, the latent heat for solidification and the fluidity of Al-Zn-Mg-Fe alloys. Thermo-physical modelling of Al-Zn-Mg-Fe alloys by JMatPro program showed $MgZn_2$, AlCuMgZn and Al3Fe phases on microstructure of their alloys. Increase of Zn and Mg amounts in Al-Zn-Mg-Fe alloys resulted in gradual reduction of the thermal conductivity of their alloys. Increase of Mg amounts in Al-2%Zn-Mg-Fe alloys had little effect on the tensile strength of their alloys, but increase of Mg amounts in Al-4%Zn-Mg-Fe alloys resulted in steep increase of the tensile strength of their alloys.

Age Hardening and Mechanical Property of Extruded Al-Zn-Mg-(Cu) Al Alloys with Sc addition (Sc 첨가된 Al-Zn-Mg-(Cu)계 알루미늄 합금 압출재의 시효 경화 거동과 기계적 성질)

  • Shim, Sung Yong;Lim, Su Gun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.5
    • /
    • pp.243-249
    • /
    • 2007
  • The age hardening behavior and mechanical properties of an extruded Al-Zn-Mg-(Cu)-0.1 wt.%Sc alloy were investigated with the Sc addition and ageing temperature. The results showed that the $Al_3Sc$ compounds were formed by Sc addition and distributed preferentially along the extrusion direction. The age hardening of Al-Zn-Mg-Cu-0.1 wt.%Sc alloy which was treated by T6 process was more significant than that of Al-Zn-Mg-0.1 wt.%Sc alloy. The tensile property of Al-Zn-Mg-Cu+0.1 wt.%Sc alloy was also higher than that of Al-Zn-Mg-0.1 wt.%Sc alloy, which is 691 MPa and 584 MPa in strength and 9% and 11% in elongation, respectively.

Effects of Al and Mg on the Microstructure and Hardness of the Coating Layer of Hot-dip Galvanized Steel Sheet (알루미늄과 마그네슘 첨가가 용융아연 도금강판 도금층의 미세조직과 경도에 미치는 영향)

  • Yoonje Sung;Donggyu Kim;Jungi Seo;Kyunghyun Han;Beomki Hong;Kangmin Kim;Seounguk Heo;Seonghyun Park;Jae-Taek Im;Seung Bae Son;Seok-Jae Lee;Jae-Gil Jung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.4
    • /
    • pp.198-205
    • /
    • 2023
  • We investigated the effects of Al and Mg on the microstructure and hardness of the coating layer of galvanized steel sheets, by thermodynamic calculations, X-ray diffraction, scanning electron microscopy, and Vickers hardness tests of Zn-0.2Al, Zn-6Al-2Mg, and Zn-10Al-5Mg coating layers. Regardless of the alloy composition of the galvanizing bath, a Fe-Al layer was observed between the coating layer and steel sheet. The Zn-0.2Al coating layer consists of major h.c.p. Zn phase and minor f.c.c. Al phase. The fraction of f.c.c. Al phase (containing a significant amount of Zn) of the coating layer increases with increasing the chemical composition of Al of the galvanizing bath. The h.c.p. MgZn2 phase was formed in the Al/Mg-containing Zn-6Al-2Mg and Zn-10Al-5Mg coating layers, forming Zn-Al-MgZn2 eutectic microstructure. The primary MgZn2 phase was additionally formed in the Zn-10Al-5Mg coating layers containing high concentrations of Al and Mg. The Vickers hardness values of Zn-0.2Al, Zn-6Al-2Mg, and Zn-10Al-5Mg coating layers were 59.1 ± 1.2 HV, 161.2 ± 5.7 HV, and 215.5 ± 40.3 HV, respectively. The addition of Al and Mg increased the hardness of the coating layer by increasing the fraction of the Al phase (containing Zn) and MgZn2 intermetallic compound, which were harder than the Zn phase.

Mechanical Properties and Castabilities of Al-12Mg-5.5Zn-xSi Alloys

  • Kim, Jeong-Min;Sung, Ki-Dug;Jun, Joong-Hwan;Kim, Ki-Tae;Jung, Woon-Jae
    • Journal of Korea Foundry Society
    • /
    • v.24 no.6
    • /
    • pp.340-346
    • /
    • 2004
  • The plan for obtaining a good combination of strength and castability appeared feasible and the following observations were made. 1. In Al-12Mg-6.6Zn-xSi alloys, more primary $Mg_2Si$ phase formed with reduced $Al_3Mg_2$ phase, as Si content is necessary for an effective solution heat treatment because the solidus temperature is very low silicon contents. 2. A high tensile strength could be obtained in the heat-treated Al-12Mg-5.5Zn-5Si alloy attributed in the heat-treated Al-12Mg-5.5Zn-5Si alloy attributes to fine $MgZn_2$ particles that precipitated uniformly in the matrix. 3. Al-12Mg-5.5Zn-Si alloys showed excellent casting capabilities such as hot cracking resistance and fluidity compared to the reference commercial alloys. 4. The wear resistance of Al-12Mg-5.5Zn-5Si alloy was superior to that of A7075 alloy, and even higher resistance is expected if the morphology and size of primary $Mg_2Si$ phase is carefully controlled.

Effect of Heat Treatment on Corrosion Resistance of Zn-Mg-Al Alloy Coated Steel

  • Il Ryoung Sohn;Tae Chul Kim;Sung Ju Kim;Myung Soo Kim;Jong Sang Kim;Woo Jin Lim;Seong Mo Bae;Su Hee Shin;Doo Jin Paik
    • Corrosion Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.283-288
    • /
    • 2024
  • Hot-dip Zn-Mg-Al coatings have a complex microstructure consisting of Zn, Al, and MgZn2 phases. Its crystal structure depends on alloy content and cooling rates. Microstructure and corrosion resistance of these coatings might be affected by heat treatment. To investigate effect of heat treatment on microstructure and corrosion resistance of Zn-Mg-Al coatings, Zn-1.5%Mg-1.5%Al coated steel was heated up to 550 ℃ at a heating rate of 80 ℃/s and cooled down to room temperature. At above 500 ℃, the ternary phase of Zn-MgZn2-Al was melted down. Only Zn and MgZn2 phases remained in the coating. Heat- and non-heat-treated specimens showed similar corrosion resistance in Salt Spray Test (SST). When a Zn-3.0%Mg-2.5%Al coated steel was subjected to heat treatment at 100 ℃ or 300 ℃ for 200 h and compared with GA and GI coated steels, the microstructure of coatings was not significantly changed at 100 ℃. However, at 300 ℃, most Al in the coating reacted with Fe in the substrate, forming a Fe-Al compound layer in the lower part of the coating. MgZn2 was preferentially formed in the upper part of the coating. As a result of SST, Zn-Mg-Al coated steels showed excellent corrosion resistance, better than GA and GI.