• 제목/요약/키워드: Al-Cu-Mg alloy

검색결과 157건 처리시간 0.029초

반고상 온도구역에서 등온유지한 Al-Si, Al-Cu 및 Mg-Al합금의 고상형상 및 조직의 변화 (Variation of Morphology of Solid Particles and Microstructure in Al-Si, Al-Cu and Mg-Al Alloys During Isothermal Heat-Treatment at Semi-Solid Temperatures)

  • 정운재;김기태;홍준표
    • 한국주조공학회지
    • /
    • 제16권6호
    • /
    • pp.556-564
    • /
    • 1996
  • Variation of shape and size of solid particles and solute redistribution in Mg-9wt.%Al, AI-4.5wt.% Cu, and AI-7wt.%Si alloys were investigated when they were heated to semi-solid temperatures and held without stirring. In the case of Mg-9wt.% Al and Al-4.5wt.%Cu alloys, the polygonal shaped solid particles were agglomerated with non-uniform distribution, and there were no disappearance of the solid/solid boundary until the end of melting. But in the case of an Al-7wt.%Si alloys, two or three spherical shaped particles were coalesced or separated individually, and the coalesced particles had no solid/solid interface on the contrary to the prevous case. The maximum size of solid particles during isothermal heating at high temperature was smaller than that at lower temperature, but the time required to reach the maximum size at high temperature was shorter than that at lower temperature. The concentrations of main solute atom whose distribution coefficient is lower than 1, decreased in the primary solid particles as the liquid fraction increased, and the gradient of solute concentration was steeper in Mg-9wt.%Al alloy and Al-4.5wt.%Cu alloy than that of Al-7wt.%Si alloy.

  • PDF

Al-Cu-Mg 합금의 석출입자, 특히 S-상 입자들에 의한 변형장의 LACBED 관찰 (LACBED Observation of Strain Fields due to Precipitates, Especially S-Phase Particles in Al-Cu-Mg Alloy)

  • 김황수
    • Applied Microscopy
    • /
    • 제37권2호
    • /
    • pp.123-133
    • /
    • 2007
  • Al합금(Al-2.5Cu-1.5Mg wt.%)의 석출물 특히 S-상석출입자 $(Al_2CuMg)$ 부근의 변형장 (strain fields)에 대해 LACBED 관찰 연구가 처음으로 수행되었다. 변형장 강도에 대한 정량적 분석을 위해서는 대응되는 LACBED패턴 시뮬레이션 필요하다. 이를 위해 S-입자에 대해서 형태가 단순한 $a_s$-축을 가진 원기둥 모양을 갖고 변형장의 격자변위 벡터가 이 축에 수직 방향을 갖는다고 가정했다. 이런 단순한 모델을 가지고 변형장에 대한 관찰 패턴과 시뮬레이션 사이 합리적인 일치를 얻었다. 그러나 합금의 초기 시효 단계에서는 의미 있는 변형장이 관측되지 않았다. 따라서 이 실험의 결과로 예상되는 것은 합금의 최대 경도를 갖는 시료에는 S-상 석출 입자들이 Al-모체에 복잡한 변형장 그물망을 만들고 이것이 합금 경도에 기여 할 것으로 사료된다.

Al-2Zn-1Cu-0.3Mg합금의 Sc첨가에 따른 미세조직, 전기전도도, 열전도도 및 기계적 특성 변화 (Effect of Sc Addition on Microstructure, Electrical Conductivity, Thermal Conductivity and Mechanical Properties of Al-2Zn-1Cu-0.3Mg Based Alloy)

  • 나상수;김용호;손현택;이성희
    • 한국재료학회지
    • /
    • 제30권10호
    • /
    • pp.542-549
    • /
    • 2020
  • Effects of Sc addition on microstructure, electrical conductivity, thermal conductivity and mechanical properties of the as-cast and as-extruded Al-2Zn-1Cu-0.3Mg-xSc (x = 0, 0.25, 0.5 wt%) alloys are investigated. The average grain size of the as-cast Al-2Zn-1Cu-0.3Mg alloy is 2,334 ㎛; however, this value drops to 914 and 529 ㎛ with addition of Sc element at 0.25 wt% and 0.5 wt%, respectively. This grain refinement is due to primary Al3Sc phase forming during solidification. The as-extruded Al-2Zn-1Cu-0.3Mg alloy has a recrystallization structure consisting of almost equiaxed grains. However, the as-extruded Sc-containing alloys consist of grains that are extremely elongated in the extrusion direction. In addition, it is found that the proportion of low-angle grain boundaries below 15 degree is dominant. This is because the addition of Sc results in the formation of coherent and nano-scale Al3Sc phases during hot extrusion, inhibiting the process of recrystallization and improving the strength by pinning of dislocations and the formation of subgrain boundaries. The maximum values of the yield and tensile strength are 126 MPa and 215 MPa for the as-extruded Al-2Zn-1Cu-0.3Mg-0.25Sc alloy, respectively. The increase in strength is probably due to the existence of nano-scale Al3Sc precipitates and dense Al2Cu phases. Thermal conductivity of the as-cast Al-2Zn-1Cu-0.3Mg-xSc alloy is reduced to 204, 187 and 183 W/MK by additions of elemental Sc of 0, 0.25 and 0.5 wt%, respectively. On the other hand, the thermal conductivity of the as-extruded Al-2Zn-1Cu-0.3Mg-xSc alloy is about 200 W/Mk regardless of the content of Sc. This is because of the formation of coherent Al3Sc phase, which decreases Sc content and causes extremely high electrical resistivity.

중간가공열처리한 AI-Li계 합금의 고온변형거동 (The Hot Deformation Behaviors of Intermediate Thermo-Mechanical Treated Al-Li Based Alloy)

  • 유창영;진영철
    • 열처리공학회지
    • /
    • 제4권3호
    • /
    • pp.1-6
    • /
    • 1991
  • In this study, intermediate thermo-mechanical treated Al-2.0 wt%Li, and Al-2.0 wt%Li-1.2 wt%Cu-1.0 wt%Mg-0.12 wt%Zr alloys were tested in tension at $10^{\circ}C$ and elevated temperature(100, 200 and $300^{\circ}C$). The results are follows : The tensile strength of Al-Li-Cu-Mg-Zr alloy is the highest but the elongation of Al-Li alloy is the highest(106%) among the all alloys in tension at $300^{\circ}C$. The Portervin-LeChartlier effect is showed in AI-Li-Cu-Mg-Zr alloy at 10 and $100^{\circ}C$, because of tangled dislocation by Mg and Cu. In the true stress-strain curves of all alloy, the peaks of stress at $300^{\circ}C$ are showed at the strain less than 0.1. In the binary alloy, the dynamic restoration process at 200 and $300^{\circ}C$ is nearly similar to dynamic recovery type. The hot deformation stress is decreased with increase of dynamic recovery degree, but the elongation is increased. When the strain the strain rate are constant, the temperature dependence of hot deformation stress is increased with increase of deformation temperature. The elongation and degree of dynamic recovery are decreased with increase of hot deformation activation energy, but the deformation stresses slightly increased.

  • PDF

Synthesis of Amorphous Matrix Nano-composite in Al-Cu-Mg Alloy

  • Kim, Kang Cheol;Park, Sung Hyun;Na, Min Young;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • 제44권3호
    • /
    • pp.105-109
    • /
    • 2014
  • The microstructure of as-quenched $Al_{70}Cu_{18}Mg_{12}$ alloy has been investigated in detail using transmission electron microscopy. Al nano-crystals about 5 nm with a high density are distributed in the amorphous matrix, indicating amorphous matrix nano-composite can be synthesized in Al-Cu-Mg alloy. The high density of Al nano-crystals indicates very high nucleation rate and sluggish growth rate during crystallization possibly due to limited diffusion rate of solute atoms of Cu and Mg during solute partitioning. The result of hardness measurement shows that the mechanical properties can be improved by designing a nano-composite structure where nanometer scale crystals are embedded in the amorphous matrix.

전자회절실험에 의한 알루미늄 합금 (Al-Cu-Mg)의 미세 S-상 석출입자에 대한 결정구조 연구 (A Study of the Crystal Structure of the Fine S-Phase Precipitate in Al-Cu-Mg Alloy by Electron Diffraction Experiments)

  • 김황수
    • Applied Microscopy
    • /
    • 제35권4호
    • /
    • pp.1-9
    • /
    • 2005
  • 이 논문에서 Al-Cu-Mg 합금의 미세 석출 입자의 S-상 ($Al_2CuMg$) 결정구조에 대해 전자회절실험에 의한 포괄적인 연구 결과가 보고 되어 있다. 이 실험에는 한 S-상 입자를 포함하는 최소 영역의 일정 zone축의 회절패턴(SAED) 관찰과 이에 대응되는 운동학적 이론을 기초로 한 패턴의 시물레이션과의 비교 분석, 그리고 관측된 회절 패턴 필름으로부터 각 Bragg회절 점의 강도의 정량적 데이터 추출과 운동학적 및 동역학적 회절 강도 계산과의 비교 검토의 과정을 포함하고 있다. 이러한 연구의 한 결과 S-상의 결정구조는 일찍이 X-ray 방법으로부터 얻은 PW 모델결정(Perlitz and Westgren, 1943)과 일치함을 보여주고 있고, HREM 방법에 의해 새로이 구한 RaVel (Radmilovic et al., 1999) 모델과는 전혀 맞지않음이 판명되었다.

Mg+Al2Ca 첨가 ADC12 (Al-Si-Cu) 합금의 미세조직, 인장 및 고주기 피로 특성 (Microstructure, Tensile Strength, and High Cycle Fatigue Properties of Mg+Al2Ca added ADC12 (Al-Si-Cu) Alloy)

  • 김영균;김민종;김세광;윤영옥;이기안
    • 소성∙가공
    • /
    • 제26권5호
    • /
    • pp.306-313
    • /
    • 2017
  • This study investigated the microstructure, tensile strength, and high cycle fatigue properties of ADC12 aluminum alloys with different $Mg+Al_2Ca$ contents manufactured using die casting process. Microstructural observation identified the presence of ${\alpha}-Al$, eutectic Si, $Al_2Cu$, and Fe-intermetallic phases. The increase of $Mg+Al_2Ca$ content resulted in finer pore size and decreased pore distribution. Room temperature tensile strength tests were conducted at strain rate of $1{\times}10^{-3}/sec$. For 0.6%Mg ADC12, measured UTS, YS, and El were 305.2MPa, 157.0MPa, and 2.7%, respectively. For 0.8%Mg ADC12, measured UTS, YS, and El were 311.2 MPa, 159.4 MPa, and 2.4%, respectively. Therefore, 0.8% ADC12 alloy had higher strength and slightly decreased elongation compared to 0.6% Mg ADC12. High cycle fatigue tests revealed that 0.6% Mg ADC12 alloy had a fatigue limit of 150 MPa while 0.8% Mg ADC12 had a fatigue limit of 160MPa. It was confirmed that $Mg+Al_2Ca$ added ADC12 alloy achieved finer, spherical eutectic Si particles, and $Al_2Cu$ phases with greater mechanical and fatigue properties since size and distribution of pores and shrinkage cavities decreased as $Mg+Al_2Ca$ content increased.

자동차 경량 부품 제조를 위한 Al-Cu-Mg 분말 합금의 소결 및 열처리 특성 (Sintering and Heat Treatment Characteristics of Al-Cu-Mg Powder Metallurgy Alloy for Lightweight Automotive Parts)

  • 안병민
    • 한국생산제조학회지
    • /
    • 제23권2호
    • /
    • pp.152-156
    • /
    • 2014
  • Lightweight materials such as aluminum and magnesium have recently received much attention in the automotive industries because of environmental and fuel-efficiency concerns. Using the powder metallurgy (PM) process for these materials creates significant opportunities for the cost-effective manufacture of lightweight automotive parts. In the present study, an Al-Cu-Mg alloy was fabricated using conventional PM processes. Primarily, the effects of the alloying elements on the sintering characteristics and mechanical behavior after heat treatment were investigated. A microstructural analysis was performed using an optical microscope and a scanning electron microscope to investigate the behavior of liquid phase sintering, including the formation of precipitates. The dependence of the mechanical behavior on the alloying elements was evaluated based on the transverse rupture strength.