• Title/Summary/Keyword: Al-Ce 혼합산화물

Search Result 3, Processing Time 0.016 seconds

CO Oxidation Over Pt Supported on Al-Ce Mixed Oxide Catalysts with Different Mole Ratios of Al/(Al+Ce) (서로 다른 몰비의 Al/(Al+Ce)를 가진 Al-Ce 혼합산화물에 담지된 Pt 촉매 상에서의 일산화탄소 산화반응)

  • Park, Jung-Hyun;Cho, Kyung-Ho;Kim, Yun-Jung;Shin, Chae-Ho
    • Clean Technology
    • /
    • v.17 no.2
    • /
    • pp.166-174
    • /
    • 2011
  • The xAl-yCe oxide catalysts with different mol ratios of Al/(Al+Ce) were prepared by a co-precipitation method and Pt supported on xAl-yCe oxide catalysts were synthesized by an incipient wetness impregnation method. The catalysts were characterized by X-ray Diffraction (XRD), $N_2$ sorption, and $H_2$/CO-temperature programmed reduction ($H_2$/CO-TPR) to correlate with catalytic activities in co oxidation. Among the catalysts studied here, Pt/1Al-9Ce oxide catalyst showed the highest activity in dry and wet reaction conditions and the catalytic activity showed a typical volcano-shape curve with respect to Al/(Al+Ce) mol ratio. When the presence of 5% water vapor in the feed, the temperature of $T_{50%}$ was shifted ca. $30^{\circ}C$ to lower temperature region than that in dry condition. From CO-TPR, the desorption peak of $CO_2$ on Pt/1Al-9Ce oxide catalyst showed the highest value and well correlated the catalytic performance. It indicates that the Pt/1Al-9Ce oxide catalyst has a large amount of active sites which can be adsorbed by co and easy to supplies the needed oxygen. In addition, the amount of pentacoordinated $Al^{3+}$ sites obtained through $^{27}Al$ NMR analysis is well correlated the catalytic performance.

Hot Corrosion of NiCrAlY/(ZrO2-CeO2-Y2O3) Composite Coatings in Molten Salt (내열복합코팅 NiCrAlY/(ZrO2-CeO2-Y2O3)의 용융염 부식)

  • Lee, Jae-Ho;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.116-116
    • /
    • 2013
  • (Ni-22Cr-10Al-1Y)와 ($ZrO_2-25CeO_2-2.5Y_2O_3$)로 구성되는 금속/세라믹 복합코팅을 대기용사(ASP; air plasma spay)으로 철 기판위에 1:3, 2:2, 3:1의 무게비로 혼합하여 제조하였다. 용사된 코팅은 금속이영지역과 세라믹잉여지역으로 구별되고, 용사중에 NiCrAlY중의 Al이 선택적으로 산화되어 Al2O3가 계면에 존재하였다. 복합코팅은 $NaCl-Na_2SO_4$ 용융염에서 $800{\sim}900^{\circ}C$, 50시간 동안 부식실험을 실시하였다. 부식생성물은 NiO, $Cr_2O_3$, ${\alpha}-Al_2O_3$가 생성되는데, 부식이 진행되면서 용해되었다. 용융염 부식이 진행되는 동안에 Cr, Al이 외방확산하였고, Na, Cl, S는 내부로 확산되었다. 시간 및 온도뿐만 아니라 금속의 양이 증가할수록 코팅의 내식성은 저하되었다.

  • PDF

Effects of Ceria and CO Reductant on $N_2O$ Decomposition over the Layered Mixed Oxide Catalysts (층상 혼합금속산화물 촉매에 의한 $N_2O$ 분해에서 Ceria 첨가 및 CO 환원제의 영향)

  • Yang, Ki-Seon;Chang, Kil-Sang
    • Clean Technology
    • /
    • v.16 no.4
    • /
    • pp.284-291
    • /
    • 2010
  • Nitrous oxide ($N_2O$) is a greenhouse material which is hard to remove. Even with a catalytic process it requires a reaction temperature, at least, higher than 670 K. This study has been performed to see the effects of Ce addition to the mixed oxide catalyst which shows the highest activity in decomposing $N_2O$ completely at temperature as low as 473 K when CO is used as a reducing agent. Mixed metal oxide(MMO) catalyst was made through co-precipitation process with small amount of Ce added to the base components of Co, Al and Rh or Pd. Consequently, the surface area of the catalyst decreased with the contents of Ce, and the catalytic activity of direct decomposition of $N_2O$ also decreased. However, in the presence of CO, the activity was found high enough to compensate the portion of activity decrease by Ce addition, so that it can be ascertained that the catalytic activity and stability can be maintained in the CO involved $N_2O$ reduction system when Ce is added for the physical stability of the catalyst.