• Title/Summary/Keyword: Al powder

Search Result 1,764, Processing Time 0.03 seconds

Fabrication of Gradient Porous Al-Cu Sintered Body (경사 다공성 Al-Cu 소결체의 제조)

  • Byun, Jong-Min;Kim, Se-Hoon;Kim, Jin-Woo;Kim, Young-Moon;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.18 no.4
    • /
    • pp.365-371
    • /
    • 2011
  • In this study, gradient porous Al-Cu sintered body was fabricated by powder metallurgy processing. Al-Cu powder mixtures were prepared by low energy ball milling with various milling time. After ball milling for 3h, the shape of powder mixtures changed to spherical type with size of 100~500 ${\mu}m$. Subsequently, Al-Cu powder mixtures were classified (under 150, 150~300 and over 300 ${\mu}m$) and compacted (20, 50 and 100 MPa). Then, they were sintered at $600^{\circ}C$ for various holding time (10, 30, 60 and 120 min) in $N_2$ atmosphere. The sintered bodies had 32~45% of porosity. As a result, the optimum holding time was determined to be 60 min at $600^{\circ}C$ and sintered bodies with various porosity were obtained by controlling the compacting pressure.

Synthesis of Al-Ni-Co-Y Bulk Metallic Glass fabricated by Spark Plasma Sintering (방전 플라즈마 소결법을 이용한 Al-Ni-Co-Y 벌크 비정질 합금의 제조)

  • Jeong Pyo Lee;Jin Kyu Lee
    • Journal of Powder Materials
    • /
    • v.30 no.1
    • /
    • pp.41-46
    • /
    • 2023
  • In this study, an Al82Ni7Co3Y8 (at%) bulk metallic glass is fabricated using gas-atomized Al82Ni7Co3Y8 metallic glass powder and subsequent spark plasma sintering (SPS). The effect of powder size on the consolidation of bulk metallic glass is considered by dividing it into 5 ㎛ or less and 20-45 ㎛. The sintered Al82Ni7Co3Y8 bulk metallic glasses exhibit crystallization behavior and crystallization enthalpy similar to those of the Al82Ni7Co3Y8 powder with 5 ㎛ or less and it is confirmed that no crystallization occurred during the sintering process. From these results, we conclude that the Z-position-controlled spark plasma sintering process, using superplastic deformation by viscous flow in the supercooled liquid-phase region of amorphous powder, is an effective process for manufacturing bulk metallic glass.

The effect of the addition of TiO2 in the preparation of (Al2O3-SiC)- SiC composite powder by SHS Process (SHS법을 이용한 복합분말(Al2O3-SiC) 제조시 TiO2첨가의 영향)

  • Yun, Gi-Seok;Yang, Beom-Seok;Lee, Jong-Hyeon;Won, Chang-Hwan
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.48-53
    • /
    • 2002
  • $Al_2O_3-SiC$ and $Al_2O_3-SiC$-TiC composite powders were prepared by SHS process using $SiO_2,\;TiO_2$, Al and C as raw materials. Aluminum powder was used as reducing agent of $SiO_2,\;TiO_2$ and activated charcoal was used as carbon source. In the preparations of $Al_2O_3-SiC$, the effect of the molar ratio in raw materials, compaction pressure, preheating temperature and atmosphere were investigated. The most important variable affecting the synthesis of $Al_2O_3-SiC$ was the molar ratio of carbon. Unreactants remained in the product among all conditions without compaction. The optimum condition in this reaction was $SiO_2$: Al: C=3: 5: 5.5, 80MPa compaction pressure under Preheating of $400^{\circ}C$ with Ar atmosphere. However there remains cabon in the optimum condition. The effect of $TiO_2$ as additive was investigated in the preparations of $Al_2O_3-SiC$. As a result of $TiO_2$ addition, $Al_2O_3-SiC$-TiC composite powder was prepared. The $Al_2O_3$ powder showed an angular type with 8 to $15{\mu}m$, and the particle size of SiC powder were 5~$10{\mu}m$ and TiC powder were 2 to $5{\mu}m$.

The Properties of Aluminium Alloy Powder for Aluminothermy Process with $Mn_3O_4$ Waste Dust ($Mn_3O_4$ 분진의 Al 테르밋 반응용 Al 합금분말의 특성)

  • Kim, Youn-Che;Song, Youn-Jun;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.71-77
    • /
    • 2013
  • Aluminium powder as reductant in aluminothermy process needs a fine particle size under 200 mesh, but it is not easy economically to make that because of its high ductility and powder production cost. In order to reduce the production cost of fine aluminum powder as reductant of $Mn_3O_4$ waste dust, therefore, the properties of aluminium alloy powder were investigated. Aluminium alloy ingot containing large amount of manganese can be crushed easily because of its intermetallic compounds having brittle properties. The manganese is also main element in ferro-manganese. We can obtain economically Al-15%Mn alloy powder by mechanical comminution process. And the result of thermite reaction using Al-15% Mn alloy powder instead of pure Al powder showed the fact that can be obtained the ferro-manganese which have a high purity in case of using pure aluminium powder as reductant. The recovery of manganese from $Mn_3O_4$ waste dust with Al-15%Mn alloy powder was higher level of about 70% than about 65% in case of using aluminium powder, that is due to lower spatter loss.

Extrusion of Spur Gear Using High-Energy Ball Milled Al-78Zn Powder (고에너지 볼밀법으로 제조된 Al-78Zn Powder를 이용한 스퍼기어의 압출)

  • Kim, Jin-Woo;Lee, Sang-Jin;Lee, Jung-Min;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.440-446
    • /
    • 2009
  • This paper was designed to fabricate the miniature spur gear with pitch circle of 2.25mm using extrusion process of a mechanically alloyed Al-78wt%Zn powder. The mechanical alloying of the powder particles were performed for ball milled times of 4h, 8h, 16 and 32h by the planetary ball milling. The mechanical properties of these alloyed powders, which were compacted and sintered-cylindrical preforms, were estimated using compression test. The results showed that the alloyed powder with average particle size of $10{\mu}m$ milled for 32h has the highest compressive(fractured) strength(288MPa). Extrusions of the miniature spur gear using the alloyed powder were carried out at different extrusion temperatures. Extrusion temperature of $300^{\circ}C$ provided the spur gear with the highest relative density and Vickers hardness and without any surface defects.