• Title/Summary/Keyword: Al powder

Search Result 1,764, Processing Time 0.023 seconds

Microstructure and Mechanical Properties of (SiC)p/Al Composite Fabricated by a Powder-in Sheath Rolling Method (분말피복압연법에 의해 제조된 (SiC)p/Al 복합재료의 미세조직 및 기계적 성질)

  • 이성희;이충효
    • Journal of Powder Materials
    • /
    • v.11 no.3
    • /
    • pp.259-264
    • /
    • 2004
  • Aluminum based metal matrix composite reinforced with SiC particles was fabricated by the powder-in sheath rolling method. A stainless steel tube with outer diameter of 12 mm and wall thickness of 1mm was used as a sheath. Mixture of aluminum powder and SiC particles of which volume content was varied from 5 to 20vol.% was filled in the tube by tap filling and then rolled to 75% reduction at ambient temperature. The rolled specimen was sintered at 56$0^{\circ}C$ for 0.5hr. The tensile strength of the (SiC)$_{p}$/Al composite increased with the volume content of SiC particles, and at 20vol.% it reached a maximum of 100㎫ which is 1.6 times higher than unreinforced material. The elongation decreased with the volume content of $Al_{2}$O$_{3}$ particles. The mechanical properties of the (SiC)$_{p}$/Al composite fabricated by the powder-in sheath rolling is compared with that of (Al$_{2}$O$_{3}$)$_{p}$/Al composite by the same process.ess.

Equal Channel Angular Pressing of Rapidly Solidified Al-20 wt % Si Alloy Powder Extrudates (급속응고 Al-20 wt% Si 합금분말 압출재의 ECAP)

  • Yoon, Seung-Chae;Hong, Soon-Jik;Seo, Min-Hong;Quang, Pham;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.97-104
    • /
    • 2004
  • In this paper processing and mechanical properties of Al-20 wt% Si alloy was studied. A bulk form of Al-20Si alloy was prepared by gas atomizing powders having the powder size of 106-145 ${\mu}m$ and powder extrusion. The powder extrudate was subsequently equal channel angular pressed up to 8 passes in order to refine grain and Si particle. The microstructure of the gas atomized powders, powder extrudates and equal channel angular pressed samples were investigated using a scanning electron microscope and X-ray diffraction. The mechanical properties of the bulk sample were measured by compressive tests and a micro Victors hardness test. Equal channel angular pressing was found to be effective in matrix grain and Si particle refinement, which enhanced the strength and hardness of the Al-2OSi alloy without deteriorating ductility in the range of experimental strain of 30%.

Sintering Behavior of 2xxx Series Al alloys with Variation of Sintering Temperature (2xxx Al 합금계 혼합분말의 소결온도에 따른 소결거동)

  • 민경호;김대건;장시영;임태환;김영도
    • Journal of Powder Materials
    • /
    • v.10 no.1
    • /
    • pp.40-45
    • /
    • 2003
  • Sintering behavior of 2xxx series Al alloy was investigated to obtain full densification and sound microstructure. The commercial 2xxx series Al alloy powder. AMB2712, was used as a starting powder. The mixing powder was characterized by using particle size analyzer, SEM and XRD. The optimum compacting pressure was 200 MPa, which was the starting point of the "homogeneous deformation" stage. The powder compacts were sintered at $550~630^{\circ}C$ after burn-off process at $400^{\circ}C$. Swelling phenomenon caused by transient liquid phase sintering was observed below $590^{\circ}C$ of sintering temperature. At $610^{\circ}C$, sintering density was increased by effect of remained liquid phase. Further densification was not observed above $610^{\circ}C$. Therefore, it was determined that the optimum sintering temperature of AMB2712 powder was $610^{\circ}C$.}C$.

The properties of TiC/Al surface alloy using a high power $CO_2$-laser (고출력 이산화탄소 레이저에 의한 TiC/Al 표면합금의 특성)

  • 송순달
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.4
    • /
    • pp.133-137
    • /
    • 2001
  • The properties of TiC/Al surface alloy prepared using a high power $CO_2$-laser was investigated. To analyze this process, the physical properties between substrate [Al] and TiC powder were measured. Surface layer size profiles, optical absorption rate and powder efficiency were measured as afunction of the laser output in TiC/Al matrix. Regardless of TiC powder existence, the absorption rate in substrate Al was decreased when laser output increased. When the laser output increased in the range of 2kW to 4.5 kW, the powder efficiency increased from 4% to 12%. However, TiC powder were not melted in molten aluminum. As a result, increased powder particles easily penetrated to the surface layer and created a two phase states in the metal matrix.

  • PDF

Synthesis of Cu/Al2O3 Nanostructured Composite Powders for Electrode Application by Thermochemical Process (열화학적 방법에 의한 전극용 나노 Cu/Al2O3 복합분말 합성)

  • 이동원;배정현;김병기
    • Journal of Powder Materials
    • /
    • v.10 no.5
    • /
    • pp.337-343
    • /
    • 2003
  • Nanostructured Cu-$Al_2O_3$ composite powders were synthesized by thermochemical process. The synthesis procedures are 1) preparation of precursor powder by spray drying of solution made from water-soluble copper and aluminum nitrates, 2) air heat treatments to evaporate volatile components in the precursor powder and synthesis of nano-structured CuO + $Al_2O_3$, and 3) CuO reduction by hydrogen into pure Cu. The suggested procedures stimulated the formation of the gamma-$Al_2O_3$, and different alumina formation behaviors appeared with various heat treating temperatures. The mean particle size of the final Cu/$Al_2O_3$ composite powders produced was 20 nm, and the electrical conductivity and hardness in the hot-extruded bulk were competitive with Cu/$Al_2O_3$ composite by the conventional internal oxidation process.

Effect of Milling Temperature on Formation of Al-Cr-Zr Metal Powder (Al-Cr-Zr 분말형성에 미치는 밀링 온도의 영향)

  • 김현승
    • Journal of Powder Materials
    • /
    • v.7 no.1
    • /
    • pp.19-26
    • /
    • 2000
  • Al-Cr-Zr metal powders were prepared by cryo-milling(-75$^{\circ}C$),ambi-milling(25$^{\circ}C$) and warm-milling(200$^{\circ}C$) to investige the effect of milling temperature. The morphogical changes and microstructural evolution of Al-6wt.%Cr-3wt.%Zr metal powder ball milling were investigated by SEM, OM and XRD. The cryo-milling at -75$^{\circ}C$ caused the more refinement of powder particle size than ambi-milling and warm-milling. The partic morpholgy of Al-Cr-Zr metal powders changed changes into spheroidal particles at 25$^{\circ}C$and spherical particles at 200$^{\circ}C$The spherical particles were formed by agglomertion and contiuous wrapping of the spheroidal particles. The calculated Al crystallite size in Al-Cr-Zr metal powders by the Scherer equation were refined rapidly for short milling time -75$^{\circ}C$compared with milling at 25$^{\circ}C$ and 200$^{\circ}C$.

  • PDF

Fabrication of Low-Shrinkage Reaction-Bonded Alumina Ceramics (저수축 반응소결 알루미나 세라믹스의 제조)

  • 박정현;이현권;정경원;염강섭
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.6
    • /
    • pp.419-430
    • /
    • 1992
  • Fabrication possibility of low-shrinkage alumina without oxidation and wetting agent was presented on the basis of observation about oxidation behavior, microstructure and physical characteristics of such reaction agents free Al2O3-Al system. The composition less than Al 10w/o where Al can act as a sintering agent for Al2O3 was excluded. Under the condition of present experiments oxidation of Al2O3-Al system was dependent not on holding time but mainly on oxidation temperature. In thes case of Al powder not comminuted effectively during powder mixing of Al2O3-Al, columnar structure which would act as a hindrance to the densification during sintering developed more during oxidation with higher Al contents, and which made the fabrication of low-shrinkage Al2O3 ceramics impossible. If Al powder was comminuted effectively due to co-mixed Al2O3 characteristics, densification was improved because of no columnar structure and made the fabrication of sintered body with -2.7% dimensional change and 81% relative density possible. As a result, it is possible to fabricate dense low-shrinkage Al2O3 ceramics without oxidation and wetting agent under conditions such as smaller particle size of Al, Al contents below 50v/o, higher green density of Al2O3-Al compact and the use of Al2O3 powder used for high-density ceramics.

  • PDF

Synthesis and Spark-plasma Sinetring of Nanoscale Al/alumina Powder by Wire Electric Explosion Process

  • Kim, Ji-Soon;Kim, H. T.;Illyin, A. P.;Kwon, Young-Soon
    • Journal of Powder Materials
    • /
    • v.12 no.5 s.52
    • /
    • pp.351-356
    • /
    • 2005
  • Nanoscale Al powder with thin layer of alumina was produced by Wire Electric Explosion (WEE) process. Spark-Plasma Sintering (SPS) was performed for the produced powder to confirm the effectiveness of SPS like so-called 'surface-cleaning effect' and so on. Crystallite size and alumina content of produced powder varied with the ratio of input energy to sublimation energy of Al wire ($e/e_s$): Increase in ($e/e_s$) resulted in the decrease of crystallite size and the increase of alumina content. Shrinkage curve during SPS process showed that the oxide surface layer could not be destroyed near the melting point of Al. It implied that there was not enough or no spark-plasma effect during SPS for Al/Alumina powder.

Manufacture of AlSi10Mg Alloy Powder for Powder Bed Fusion(PBF) Process using Gas Atomization Method (가스 분무법을 이용한 Powder Bed Fusion(PBF) 공정용 AlSi10Mg 합금 분말 제조)

  • Im, Weon Bin;Park, Seung Joon;Yun, Yeo Chun;Kim, Byeong Cheol
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.120-126
    • /
    • 2021
  • In this study, AlSi10Mg alloy powders are synthesized using gas atomization and sieving processes for powder bed fusion (PBF) additive manufacturing. The effect of nozzle diameter (ø = 4.0, 4.5, 5.0 and 8.0 mm) on the gas atomization and sieving size on the properties of the prepared powder are investigated. As the nozzle diameter decreases, the size of the manufactured powder decreases, and the uniformity of the particle size distribution improves. Therefore, the ø 4.0 mm nozzle diameter yields powder with superior properties. Spherically shaped powders can be prepared at a scale suitable for the PBF process with a particle size distribution of 10-45 ㎛. The Hausner ratio value of the powder is measured to be 1.24. In addition, the yield fraction of the powder prepared in this study is 26.6%, which is higher than the previously reported value of 10-15%. These results indicate that the nozzle diameter and the post-sieve process simultaneously influence the shape of the prepared powder as well as the satellite powder on its surface.