• 제목/요약/키워드: Al matrix composites

검색결과 319건 처리시간 0.018초

$Al/{Al_2}{O_3}$금속복합재료의 기계적 성질과 피로거동 (Mechanical Property and Fatigue Bahavior of $Al/{Al_2}{O_3}$ Metal Matrix Composite)

  • 송정일;임홍준;한경섭
    • 대한기계학회논문집A
    • /
    • 제20권3호
    • /
    • pp.753-764
    • /
    • 1996
  • The metal matrix composites(MMC) are currently receiving a great deal of attention. These composites possess exellent mechanical and physical properties such as modulus, strength, wear resistance and thermal stability, which make them very attractive for use in automotive piston. In this study, $Al/{Al_2}{O_3}$(15%) composites are fabricated by the squeeze casting method. Mechanical properties such as tensile strength and ductility are performed at room and elevated temperature($250^{\circ}C$ and $350^{\circ}C$), respectively. Through thermomechanical analyser, thermal expansion coefficient of $Al/{Al_2}{O_3}$ composites are conducted for ranging from room temperature to ($400^{\circ}C$.And bending fatigue tests are also performed by the rotary bending machine at room temperature.The tensile strength and elastic modulus have been improved up to 38% and 35% by the addition of the reinforcements, respectively. Thermal expansion coefficients of MMCs which is located normal and parralel to the applied pressure are showed slightly different less than 10%. Fatigue strengh of the composite was improved by about 20% compared with that of unreinforced Al alloy. The results of this study will be used to understand the basic fracture behavior of MMCs and eventually to expand the applocation of MMCs as a machine parts undertaken various loadings.

Al/SiCp 복합재료의 마모거동에 미치는 MML의 영향 (Effect of MML on the Wear Behavior of Al/SiCp Composites)

  • 김영식;김균택
    • Tribology and Lubricants
    • /
    • 제25권1호
    • /
    • pp.66-72
    • /
    • 2009
  • Al-based composites reinforced with SiC particulate were fabricated using a thermal spray process, and dry sliding wear behavior of the composites was investigated. Pre-mixed Al and SiC powders were sprayed on an A16061 substrate by flame spraying, and dry sliding wear test were performed under various sliding speed and applied load conditions against ${Al_2}{O_3}$ ball. Wear behavior of the composites was studied by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). And build-up mechanism of MML on the worn surface of the composites was examined. It was revealed that these MML was formed of debris from the contact surface of the composites and effected to wear behavior of the composites protecting the contact surface of the composites.

Effects of Surface Nitrification on Thermal Conductivity of Modified Aluminum Oxide Nanofibers-Reinforced Epoxy Matrix Nanocomposites

  • Kim, Byung-Joo;Bae, Kyong-Min;An, Kay-Hyeok;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권10호
    • /
    • pp.3258-3264
    • /
    • 2012
  • Aluminum oxide ($Al_2O_3$) nanofibers were treated thermally under an ammonia ($NH_3$) gas stream balanced by nitrogen to form a thin aluminum nitride (AlN) layer on the nanofibers, resulting in the enhancement of thermal conductivity of $Al_2O_3$/epoxy nanocomposites. The micro-structural and morphological properties of the $NH_3$-assisted thermally-treated $Al_2O_3$ nanofibers were characterized by X-ray diffraction (XRD) and atomic force microscopy (AEM), respectively. The surface characteristics and pore structures were observed by X-ray photoelectron spectroscopy (XPS), Zeta-potential and $N_2$/77 K isothermal adsorptions. From the results, the formation of AlN on $Al_2O_3$ nanofibers was confirmed by XRD and XPS. The thermal conductivity (TC) of the modified $Al_2O_3$ nanofibers/epoxy composites increased with increasing treated temperatures. On the other hand, the severely treated $Al_2O_3$/epoxy composites showed a decrease in TC, resulting from a decrease in the probability of heat-transfer networks between the filler and matrix in this system due to the aggregation of nanofiber fillers.

무가압침투법에 의한 $Al_2O_3/Al$ 복합재료의 제조특성 (Fabrication of $Al_2O_3/Al$ Composites by Pressureless Infiltration Technique)

  • 김재동;김형진;고성위
    • 동력기계공학회지
    • /
    • 제3권2호
    • /
    • pp.57-63
    • /
    • 1999
  • The fabrication of $Al_2O_3/Al$ composites by pressureless infiltration technique was made to investigate the effects of processing variables such as content of Mg, processing temperature and time on the infiltration behavior of molten Al and microstructure. When the pure Al was infiltrated into mixtures of Mg and $Al_2O_3$ powder, processing temperature required to spontaneous infiltration was decreased and critical processing temperature and Mg content were $700^{\circ}C$ and 3wt% respectively. The content of Mg was found the most powerful variable for infiltration of molten Al. The infiltration ratio increased with Mg content and processing temperature, however the $Al_2O_3/Al$ composites which were fabricated by high Mg content and processing temperature resulted in non uniform dispersion of $Al_2O_3$ particles by excessive interfacial reaction. XRD pattern indicated that $MgAl_2O_4$ and AIN was observed at the interface of $Al_2O_3$ particles and in the Al matrix as reaction products.

  • PDF

$ZTA-Al_2O_3$ Whisker계 복합재료의 미세구조 변화에 따른 열적, 기계적 특성에 관한 연구 (Thermo-mechanical Properties and Microstructures of $ZTA-Al_2O_3$ Whisker Composites)

  • 이문환;최성철;이응상
    • 한국세라믹학회지
    • /
    • 제30권6호
    • /
    • pp.457-468
    • /
    • 1993
  • In oxide matrix-SiC(W) composites, instability and glassy phase formation due to oxidation at the high temperature and the diffusion of Si, respectively, cause brittle fracture and low reliability for ceramic materials. The mode of contribution in each mechanisms induced by matrix-whisker debonding, varies with the morphology of matrix-whisker interfaces. This work has described the dispersion behaviours and stabilization mechanisms in slip systems, and multiple toughening mechanisms by dint of two second phase different from each other when spherical ZrO2 and chemically stable Al2O3(W) is respectively added in Al2O3 matrix. To obtain complexshaped components, slip casted bodies were sintered at 1$600^{\circ}C$, 2hrs up to 98~99% R.D.. Multiple toughening mechanisms in comparison with theories reported until now will be discussed as a result of the phase analysis of ZrO2 by athermal behaviours and microstructural characterizations as well as measured mechanical properties.

  • PDF

용탕단조법으로 제조된 $Al_2O_3/AC4C$ 복합재료의 피로균열 전파거동에 관한 연구 (A Study on the Fatigue Crack Propagation Behavior of $Al_2O_3/AC4C$ Composites Made by Squeeze Casting Process)

  • 여인동;이지환
    • 한국주조공학회지
    • /
    • 제15권4호
    • /
    • pp.388-396
    • /
    • 1995
  • This study has been conducted with the purpose of examining the fatigue crack growth characteristics of $Al_2O_3$ short fiber reinforced aluminum matrix composites made by squeeze casting process with different applied pressure and binder amount. Fatigue crack growth experiments have been performed under constant load amplitude method with a fixed load ratio. The rate of crack propagation was decreased with binder amount as well as applied pressure. Also fatigue crack growth path in matrix was changed from flat to rough mode with an increase of applied pressure. In the composites, fatigue crack was propagated to interface between matrix and reinforcement at 10MPa, but it was propagated to reinforcement at 20MPa. The major reason of thee result was considered that interfacial bonding force and microstructure of matrix were improved due to an increase of applied pressure. Localized ductile striation in the composites was observed at low growth rate region and such a phenominon was remarkable with an increase of applied pressure. At high growth rate region, the propensity of fracture appearance was changed from interfacial debonding to reinforcement fracture with an increase of applied pressure.

  • PDF

알루미늄 기지 금속복합재료의 기계적 성질에 미치는 제조변수의 영향 (Effects of Processing Parameters on the Mechanical Properties of Aluminium Matrix Composites)

  • 김재동;고성위;김형진
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.130-136
    • /
    • 2005
  • The effects of additional Mg content, the size and volume fraction of reinforcement phase on the mechanical properties of ceramic particle reinforced aluminium matrix composites fabricated by pressureless metal infiltration process were investigated. The hardness of $SiC_p/AC8A$ composites increased gradually with an increase in the additive Mg content, while the bending strength of $SiC_p/AC8A$ composites increased with an increase in additive Mg content up to 5%. However, this decreased when the level of additive Mg content was greater than 5% due to the formation of coarse precipitates by excessive Mg reaction and an increase in the porosity level. The hardness and strength of the composites increased with decreasing the size of SiC particle. It was found that the composites with smaller particles enhanced the interfacial bonding than those with bigger particles from fractography of the composites. The hardness of $Al_2O_{3p}/AC8A$ composites increased gradually with an increase in the volume fraction, however, the bending strength of $Al_2O_{3p}/AC8A$ composites decreased when the volume fraction of alumina particle was greater than 40% owing to the high porosity level.

  • PDF

용탕단조법에 의한 Alumina단섬유강화 AC4C기 복합재료의 인장강도에 미치는 점결제 및 가압력의 영향 (Influence of Binder and Applied Pressure on Tensile Strength of $AC4C/Al_2O_3$ Composites Made by Squeeze Casting Process)

  • 여인동;이지환
    • 한국주조공학회지
    • /
    • 제15권2호
    • /
    • pp.138-145
    • /
    • 1995
  • The mechanical properties of $Al/Al_2O_3$ composites have been investigated in relation with manufacturing factors such as applied pressure of casting and binder amount of preform. It was found that tensile strength increases with an increase of applied pressure, but decreases with binder amount. Increase of tensile strength is attributable to refinement of microstructure, improvement of intefacial bonding between $Al_2O_3$ short fiber and matrix, decrease of porosity in the matrix. Due to the high thermal stability of alumina short fiber, tensile strength of composites at $150^{\circ}C$ was superior to matrix alloy at room temperature. To evaluate the strength of composites, modified Kelly-Tyson's equation was introduced. Manufacturing factor M was obtained calculating from experimental data. M values were increased with applied pressure, but decreased with binder amount. The initiation of microcrack appeared to be at interface and reinforcement colony. Amount of micro-dimple was increased with applied pressure, and interfacial debonding phenomenon was remarkable with an increase of binder amount.

  • PDF

Vacuum Hot Pressing 조건이 $SiC_w$/2124AI 금속복합재료의 기계적 성질 및 미세구조에 미치는 영향 (Effects of Vacuum Hot Pressing Conditions on Mechanical Properties and Microstructures of $SiC_w$/2124Al Metal Matrix Composites)

  • 홍순형
    • 한국분말재료학회지
    • /
    • 제1권2호
    • /
    • pp.159-166
    • /
    • 1994
  • The variation of the microstructures and the mechanical properties with varying vacuum hot pressing temperature and pressure was investigated in PyM processed 20 vol%) SiCw/ 2124Al composites. As increasing the vacuum hot pressing temperature, the aspect ratio of whiskers and density of composites increased due to the softening of 2124Al matrix with the increased amount of liquid phase. The tensile strength of composite increased with increasing vacuum hot pressing temperature up to $570^{\circ}C$ and became saturated above $570^{\circ}C$, To attain the high densification of composites above 99%, the vacuum hot pressing pressure was needed to be above 70 MPa. However, the higher vacuum hot pressing pressure above 70 MPa was not effective to increase the tensile strength due to the reduced aspect ratio of SiC whiskers from damage of whiskers during vacuum hot pressing. A phenomenological equation to predict the tensile strength of $SiC_w$/2124AI composite was proposed as a function including two microstructural parameters, i.e. density of composites and aspect ratio of whiskers. The tensile strength of $SiC_w$/2124AI were found more sensitive to the porosity than other P/M materials due to the higher stress concentration and reduced load transfer efficiency by the pores locating at whisker/matrix interfaces.

  • PDF

강화상의 분율에 따른 알루미늄기 복합재료의 마모거동 (Wear Behavior of Al-based Composites according to Reinforcements Volume Fraction)

  • 이광진;김균택;김영식
    • 동력기계공학회지
    • /
    • 제15권5호
    • /
    • pp.77-82
    • /
    • 2011
  • SiC particulate reinforced Al matrix composites with different SiC volume fractions were fabricated by thermal spray process. And the dry sliding wear test were performed on these composites using the applied load of 10 N, rotational speed of 30 rpm, radius of rotation 15 mm. Wear tracks on the Al/SiC composites were investigated using scanning electron microscope(SEM) and energy dispersive spectroscopy (EDS). It was observed that wear behavior of Al/SiC composites and formation of MML was changed dramatically according to reinforcement volume fraction.