• 제목/요약/키워드: Al matrix Composite

검색결과 341건 처리시간 0.022초

Surface Oxidation of High Strength Automotive Steels during Continuous Annealing, and the Influence of Trace Elements of P,B, and Sb

  • Sohn, Il-Ryoung;Park, Joong-Chul;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • 제9권6호
    • /
    • pp.259-264
    • /
    • 2010
  • In continuous hot dip galvanizing process, oxide formation on steel surface has an influence on Zn wetting. High strength automotive steel contains high amount of Si and Mn, where Si-Mn composite oxides such as $Mn_2SiO_4$ or $MnSiO_3$ covers the surface after annealing. Zn wetting depends on how the aluminothermia reaction can reduce the Mn-Si composite oxides and then form inhibition layer such as $Fe_2Al_5$ on the steel surface. The outward diffusion of metallic ions such as $Mn^{2+}$, $Si^{2+}$ in the steel matrix is very important factor for the formation of the surface oxides on the steel surface. The surface state and grain boundaries provide an important role for the diffusion and the surface oxide reactions. Some elements such as P, Sb, and B have a strong affinity for the interface precipitation, and it influence the diffusivity of metallic ions on grain boundaries. B oxide forms very rapildly on the steel surface during the annealing, and this promote complex oxides with $SiO_2$ or MnO. P has inter-reacted with other elements on the grain boundaries and influence the diffusion through on them. Small addition of Sb could suppress the decarburization from steel surface and retards the formation of internal and external selective oxides on the steel surface. Interface control by the trace elements such as Sb could be available to improve the Zn wettability during the hot dip galvanizing.

Porosity-dependent vibration investigation of functionally graded carbon nanotube-reinforced composite beam

  • Abdulmajeed M. Alsubaie;Ibrahim Alfaqih;Mohammed A. Al-Osta;Abdelouahed Tounsi;Abdelbaki Chikh;Ismail M. Mudhaffar;Saeed Tahir
    • Computers and Concrete
    • /
    • 제32권1호
    • /
    • pp.75-85
    • /
    • 2023
  • This work utilizes simplified higher-order shear deformation beam theory (HSDBT) to investigate the vibration response for functionally graded carbon nanotube-reinforced composite (CNTRC) beam. Novel to this work, single-walled carbon nanotubes (SWCNTs) are distributed and aligned in a matrix of polymer throughout the beam, resting on a viscoelastic foundation. Four un-similar patterns of reinforcement distribution functions are investigated for the CNTRC beam. Porosity is another consideration taken into account due to its significant effect on functionally graded materials (FGMs) properties. Three types of uneven porosity distributions are studied in this study. The damping coefficient and Winkler's and Pasternak's parameters are considered in investigating the viscosity effect on the foundation. Moreover, the impact of different parameters on the vibration of the CNTRC beam supported by a viscoelastic foundation is discussed. A comparison to other works is made to validate numerical results in addition to analytical discussions. The findings indicate that incorporating a damping coefficient can improve the vibration performance, especially when the spring constant factors are raised. Additionally, it has been noted that the fundamental frequency of a beam increases as the porosity coefficient increases, indicating that porosity may have a significant impact on the vibrational characteristics of beams.

Banana agriculture waste as eco-friendly material in fibre-reinforced concrete: An experimental study

  • Mohammed M., Attia;Abd Al-Kader A., Al Sayed;Bassam A., Tayeh;Shymaa M.M., Shawky
    • Advances in concrete construction
    • /
    • 제14권5호
    • /
    • pp.355-368
    • /
    • 2022
  • This paper investigates the impact of length and volume fractions (VFs) of banana fibres (BFs) on the mechanical and physical properties of concrete. The mechanical properties were compressive strength, splitting tensile, flexural strength, and bond stress, while the physical properties were unit weight and absorption. The slump test was used to determine workability. The concrete's behaviour with BFs was studied using scanning electron microscopy. Experimental work of concrete mixtures with BFs of various lengths (12 mm, 25 mm, and 35 mm) and VFs (0%, 0.5%, 1.0%, and 1.5%) were carried out. The samples did not indicate any agglomeration of fibres or heterogeneity during mixing. The addition of BFs to concrete with VFs of up to 1.50% for all fibre lengths have a significant impact on mechanical properties, also the longer fibres performed better than shorter ones at all volume fractions of BFs. The mix10, which contain BFs with VFs 1.5% and length 35 mm, demonstrated the highest mechanical properties. The compressive strength, splitting tensile, flexural strength, and bond stress of the mix10 were 37.71 MPa, 4.27 Mpa, 6.12 MPa, and 6.75 MPa, an increase of 7.37%, 20.96%, 24.13%, and 11.2% over the reference concrete, which was 35.12 MPa, 3.53 MPa, 4.93 MPa, and 6.07 MP, respectively. The absorption is increased for all lengths by increasing the VFs up to 1.5%. Longer fibres have lower absorption, while shorter fibres have higher absorption. The mix8 had the highest absorption of 4.52%, compared to 3.12% for the control mix. Furthermore, the microstructure of concrete was improved through improved bonding between the fibres and the matrix, which resulted in improved mechanical properties of the composite.

폐석분을 사용한 시멘트 2차 제품의 물리적 특성에 관한 연구 (A Study on the Variation of Physical Properties on the Secondary Product of Cement by Using Crushed Stone Powder)

  • 박지선;이세현;송훈
    • 한국건설순환자원학회논문집
    • /
    • 제6권4호
    • /
    • pp.103-111
    • /
    • 2012
  • 압축강도 50 MPa이상의 압출성형 시멘트 패널은 고온고압 증기양생으로 생산된다. 고온고압 증기양생에서 요구 강도를 얻기 위해서는 시멘트에 포함되어 있는 CaO와의 반응에 필요한 적정량의 $SiO_2$를 공급하는 것이 관건이다. $SiO_2$의 공급원으로 가장 널리 사용되는 원료는 규석분인데, 이는 환경파괴를 전제로 하기 때문에 친환경적인 제품 생산을 위하여 본 연구에서는 규석분을 대신하여 폐석분을 활용한 시멘트 2차 제품을 생산하고 이에 대한 압출성과 물리적인 특성비교를 실시하였다. 이를 위하여 화성 석산에서 채취한 폐석분을 건조 파쇄한 후 이를 규석분 사용량의 최대 50%까지 치환하여 압출성 및 물리적 특성 실험을 수행하였다. 실험결과 평균 입경은 폐석분과 규석분의 크기가 유사하였으나 물리적 특성은 규석분을 폐석분으로 단순 치환하였을 경우, 대부분 낮게 발현되었다. 따라서 폐석분을 활용할 경우 수화활성을 위한 첨가제 등의 활용이 필요할 것으로 판단된다.

  • PDF

광중합 복합레진의 화학적 분해 평가 (AN EVALUATION OF CHEMICAL DEGRADATION OF LIGHT-CURED RESTORATIVE COMPOSITES)

  • 양규호;김훈주;최남기
    • 대한소아치과학회지
    • /
    • 제30권3호
    • /
    • pp.530-539
    • /
    • 2003
  • 본 연구에서는 4종의 복합레진(Palpique Estelite, Filtek P 60, Spectrum, Charisma)을 선택하였다. 각 제품당 5개의 시편을 제작하여 무게 측정을 한 후, NaOH 용액에 2주 동안 보관하였고 1.23% HCl로 중화하고 세척, 건조시켜 무게 측정을 하였다. 주사전자현미경과 공초점 레이저 주사현미경으로 복합레진의 분해층 표면과 분해깊이를 관찰하였고, 분해 저항성은 용액내로 용출된 Si, Al, Ba의 농도를 근거로 평가하여 다음과 같은 결과를 얻었다. 1. 각 제품의 무게손실량은 Palpique Estelite가 가장 많았고, Filtek P 60, Charisma, Spectrum 순이었다. 2. 각 제품의 표면하 분해층 깊이는 Filtek P 60이 가장 깊었고, Charisma, Palpique Estelite, Spectrum 순이었다. 3. Si 용출량은 Charisma가 가장 많았고, Spectrum, Palpique Estelite, Filtek P 60 순이었다. 4. 무게손실과 분해층 깊이 사이에는 높은 상관관계를 보였다(r=0.704, p<0.05). 5. 주사전자현미경 관찰시 NaOH용액에 보관한 후 레진 기질과 충전제 사이의 결합의 파괴 양상인 분해층 표면을 관찰할 수 있었고 공초점 레이저 현미경 관찰시 레진의 분해층 깊이를 관찰할 수 있었다.

  • PDF

Fabrication, Microstructure and Compression Properties of AZ31 Mg Foams

  • Zhao, Rui;Li, Yuxuan;Jeong, Seung-Reuag;Yue, Xuezheng;Hur, Bo-Young
    • 한국재료학회지
    • /
    • 제21권6호
    • /
    • pp.314-319
    • /
    • 2011
  • Melt foaming method is one of cost-effective methods to make metal foam and it has been successfully applied to fabricate Mg foams. In this research, AZ31 Mg alloy ingot was used as a metal matrix, using AlCa granular as thickening agent and $CaCO_3$ powder as foaming agent, AZ31 Mg alloy foams were fabricated by melt-foaming method at different foaming temperatures. The porosity was above 41.2%~73.3%, pore size was between 0.38~1.52 mm, and homogenous pore structures were obtained. Microstructure and mechanical properties of the AZ31 Mg alloy foams were investigated by optical microscopy, SEM and UTM. The results showed that pore structure and pore distribution were much better than those fabricated at lower temperatures. The compression behavior of the AZ31 Mg alloy foam behaved as typical porous materials. As the foaming temperature increased from $660^{\circ}C$ to $750^{\circ}C$, the compressed strength also increased. The AZ31 Mg alloy foam with a foaming temperature of $720^{\circ}C$ had the best energy absorption. The energy absorption value of Mg foam was 15.52 $MJ/m^3$ at a densification strain of 52%. Furthermore, the high energy absorption efficiencies of the AZ31 Mg alloy foam kept at about 0.85 in the plastic plateau region, which indicates that composite foam possess a high energy absorption characteristic, and the Vickers hardness of AZ31 Mg alloy foam decreased as the foaming temperature increased.

반응생성에 의한 Ti/TiB 복합재료의 제조와 기계적 성질 (In-site Processing and Mechanical Properties of Ti/TiB Composites)

  • 정희원;이용태
    • 한국재료학회지
    • /
    • 제9권3호
    • /
    • pp.307-314
    • /
    • 1999
  • 반응생성에 의한 Ti/TiB 복합재료를 제조하기 위한 반응분말$(TiB_2, B_4C)$, 소결온도, 소결시간을 결정하기 위하여 제조조건에 따른 반응생성상, 미세조직, 상대밀도 등을 조사하였다. 제조된 복합재료의 기계적 성질은 상온 압축항복강도로 평가하였다. 복합재료를 제조하기 위하여 혼합하는 $TiB_2$반응분말의 경우 $1300^{\circ}C, B_4C$ 반응분말의 경우 $1400^{\circ}C$의 소결온도가 최적조건임을 확인하였다. 본 공정에 의해서 제조된 복합재료의 압축항복강도는 비교재인 Ti-6Al-4V 보다 모두 우수하였다. 또한 $TiB_2$반응분말에 의해서 제조된 복합재료가 $B_4C$ 반응분말에 의해서 제조된 복합재료보다 우수한 압축항복강도를 나타내었다. 이는, 압축시험한 복합재료에서의 균열전파양상을 조사한 결과, 강화상과 기지간의 접합특성을 $B_4C$ 반응분말에 의한 복합재료의 접합특성보다 우수하였기 때문이었다.

  • PDF

금속복합판재 적용 다층 구조 방호성능 평가 (Metal Matrix Composite(MMC) Layered Armour System)

  • 이민형;박상원;조일국
    • 한국군사과학기술학회지
    • /
    • 제20권6호
    • /
    • pp.752-757
    • /
    • 2017
  • 새로운 공정으로 제작한 금속판재(MMC)가 운동에너지탄을 막는 부가방호구조로 적용가능성을 확인하기 위해 고속충돌시험 및 수치계산으로 평가연구를 수행하였다. 충돌속도는 1.3 km/s 이상에서 우선적으로 수직충돌상황만 고려하였다. 연강의 반무한판에 대한 침투깊이를 기준값으로 설정하고 새로운 부가장갑을 설치하는 경우에 대해 침투깊이 및 질량효율을 비교 검토하였다. MMC판재의 제작은 한국재료연구소에서 이루어졌으며, 이 재료에 대한 고속변형 물성은 포항공과대학에서 수행되었다. 결과는 다음과 같이 요약된다. (1) 연강 반무한판에 세라믹 판재를 부가하는 것만으로도 방호성능 감소 없이 중량이득이 나타난다. (2) 세라믹 판재 앞뒷면에 연성의 금속을 추가 부가하면 중량 증대 없이도 방호성능은 다소 증가하였다. 이는 세라믹을 감싸는 효과가 일부 나타난 것으로 판단된다. (3) 세라믹 판재 앞뒷면에 부가된 연성의 금속을 MMC로 변경한 경우 방호성능 감소 없이 방호성능이 추가적으로 다소 증대되었다. 이것은 단순 연성의 금속보다는 연성과 취성을 모두 지니는 MMC가 바람직한 역할을 수행하였다고 보인다. 즉 세라믹을 감싸는 encapsule 효과 및 탄 저지력이 우수한 세라믹의 취성이 동시에 나타남을 의미한다. (4) 마지막으로 현재의 자료만으로는 강화재로 SiC와 B4C중에 우열을 가리기에는 미소한 차이만 발생하기에 부족함이 있다.

Machinability investigation and sustainability assessment in FDHT with coated ceramic tool

  • Panda, Asutosh;Das, Sudhansu Ranjan;Dhupal, Debabrata
    • Steel and Composite Structures
    • /
    • 제34권5호
    • /
    • pp.681-698
    • /
    • 2020
  • The paper addresses contribution to the modeling and optimization of major machinability parameters (cutting force, surface roughness, and tool wear) in finish dry hard turning (FDHT) for machinability evaluation of hardened AISI grade die steel D3 with PVD-TiN coated (Al2O3-TiCN) mixed ceramic tool insert. The turning trials are performed based on Taguchi's L18 orthogonal array design of experiments for the development of regression model as well as adequate model prediction by considering tool approach angle, nose radius, cutting speed, feed rate, and depth of cut as major machining parameters. The models or correlations are developed by employing multiple regression analysis (MRA). In addition, statistical technique (response surface methodology) followed by computational approaches (genetic algorithm and particle swarm optimization) have been employed for multiple response optimization. Thereafter, the effectiveness of proposed three (RSM, GA, PSO) optimization techniques are evaluated by confirmation test and subsequently the best optimization results have been used for estimation of energy consumption which includes savings of carbon footprint towards green machining and for tool life estimation followed by cost analysis to justify the economic feasibility of PVD-TiN coated Al2O3+TiCN mixed ceramic tool in FDHT operation. Finally, estimation of energy savings, economic analysis, and sustainability assessment are performed by employing carbon footprint analysis, Gilbert approach, and Pugh matrix, respectively. Novelty aspects, the present work: (i) contributes to practical industrial application of finish hard turning for the shaft and die makers to select the optimum cutting conditions in a range of hardness of 45-60 HRC, (ii) demonstrates the replacement of expensive, time-consuming conventional cylindrical grinding process and proposes the alternative of costlier CBN tool by utilizing ceramic tool in hard turning processes considering technological, economical and ecological aspects, which are helpful and efficient from industrial point of view, (iii) provides environment friendliness, cleaner production for machining of hardened steels, (iv) helps to improve the desirable machinability characteristics, and (v) serves as a knowledge for the development of a common language for sustainable manufacturing in both research field and industrial practice.

Stellite bearings for liquid Zn-/Al-Systems with advanced chemical and physical properties by Mechanical Alloying and Standard-PM-Route

  • Zoz, H.;Benz, H.U.;Huettebraeucker, K.;Furken, L.;Ren, H.;Reichardt, R.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2000년도 춘계학술강연 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.9-10
    • /
    • 2000
  • An important business-field of world-wide steel-industry is the coating of thin metal-sheets with zinc, zinc-aluminum and aluminum based materials. These products mostly go into automotive industry. in particular for the car-body. into building and construction industry as well as household appliances. Due to mass-production, the processing is done in large continuously operating plants where the mostly cold-rolled metal-strip as the substrate is handled in coils up to 40 tons unwind before and rolled up again after passing the processing plant which includes cleaning, annealing, hot-dip galvanizing / aluminizing and chemical treatment. In the liquid Zn, Zn-AI, AI-Zn and AI-Si bathes a combined action of corrosion and wear under high temperature and high stress onto the transfer components (rolls) accounts for major economic losses. Most critical here are the bearing systems of these rolls operating in the liquid system. Rolls in liquid system can not be avoided as they are needed to transfer the steel-strip into and out of the crucible. Since several years, ceramic roller bearings are tested here [1.2], however, in particular due to uncontrollable Slag-impurities within the hot bath [3], slide bearings are still expected to be of a higher potential [4]. The today's state of the art is the application of slide bearings based on Stellite\ulcorneragainst Stellite which is in general a 50-60 wt% Co-matrix with incorporated Cr- and W-carbides and other composites. Indeed Stellite is used as the bearing-material as of it's chemical properties (does not go into solution), the physical properties in particular with poor lubricating properties are not satisfying at all. To increase the Sliding behavior in the bearing system, about 0.15-0.2 wt% of lead has been added into the hot-bath in the past. Due to environmental regulations. this had to be reduced dramatically_ This together with the heavily increasing production rates expressed by increased velocity of the substrate-steel-band up to 200 m/min and increased tractate power up to 10 tons in modern plants. leads to life times of the bearings of a few up to several days only. To improve this situation. the Mechanical Alloying (MA) TeChnique [5.6.7.8] is used to prOduce advanced Stellite-based bearing materials. A lubricating phase is introduced into Stellite-powder-material by MA, the composite-powder-particles are coated by High Energy Milling (HEM) in order to produce bearing-bushes of approximately 12 kg by Sintering, Liquid Phase Sintering (LPS) and Hot Isostatic Pressing (HIP). The chemical and physical behavior of samples as well as the bearing systems in the hot galvanizing / aluminizing plant are discussed. DependenCies like lubricant material and composite, LPS-binder and composite, particle shape and PM-route with respect to achievable density. (temperature--) shock-reSistibility and corrosive-wear behavior will be described. The materials are characterized by particle size analysis (laser diffraction), scanning electron microscopy and X-ray diffraction. corrosive-wear behavior is determined using a special cylinder-in-bush apparatus (CIBA) as well as field-test in real production condition. Part I of this work describes the initial testing phase where different sample materials are produced, characterized, consolidated and tested in the CIBA under a common AI-Zn-system. The results are discussed and the material-system for the large components to be produced for the field test in real production condition is decided. Outlook: Part II of this work will describe the field test in a hot-dip-galvanizing/aluminizing plant of the mechanically alloyed bearing bushes under aluminum-rich liquid metal. Alter testing, the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed. Part III of this project will describe a second initial testing phase where the won results of part 1+11 will be transferred to the AI-Si system. Part IV of this project will describe the field test in a hot-dip-aluminizing plant of the mechanically alloyed bearing bushes under aluminum liquid metal. After testing. the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed.

  • PDF