• 제목/요약/키워드: Al foam

검색결과 114건 처리시간 0.027초

가압형태와 발포제가 분말성형 발포법에 의해 제조된 알루미늄 발포체의 미세구조에 미치는 영향 (The Effect of Pressing Type and Foaming Agent on the Microstructural Characteristic of Al Foam Produced by Powder Compact Processing)

  • 최지웅;김혜성
    • 열처리공학회지
    • /
    • 제34권2호
    • /
    • pp.60-65
    • /
    • 2021
  • In this study, the effect of pressure type and foaming agent on the microstructural change of Al foam produced by powder compact processing was investigated. Better foaming characteristic is easily obtained from extrusion process with strong plastic deformation and preheating than that by uniaxial pressing with preheating. In current powder compact foaming process using TiH2/MgH2 mixture as a foaming agent, a temperature of 670℃ and addition of 30% MgH2 in TiH2 foaming agent was chosen as the most suitable foaming condition. The aluminum (Al) foams with maximum porosity of around 70%, relatively regular pore size and distribution were successfully produced by means of the powder metallurgy method and extrusion process.

Al-Si 합금 발포금속의 조직 및 기계적 특성에 미치는 Si함량의 영향 (Effect of Si Contents on Structure and Mechanical Properties of Al-Si Alloy Metallic Foams)

  • 김병구;탁병수;정승룡;정민재;허보영
    • 한국주조공학회지
    • /
    • 제30권1호
    • /
    • pp.22-28
    • /
    • 2010
  • Metal foam is a porous or cellular structure material and representative property is a very high porosity. Foamed materials have very special properties such as sound, vibration, energy and impact absorption capacity. Especially this properties are widely used for safety demands of architecture, auto and aircraft industry. But metal foam need to increased its compression strength and hardness. This study were researched about Al-Si alloy foams with variation amount of Si contents for their fabrication and properties such as porosity, cell structure, microstructure and mechanical properties. The result are that the range of pore size is 2~4 $mm{\phi}$, the high porosity are 88%, high yield strength is 1.8MPa, the strain ratio is 60~70% and vickers hardness is 33.1~50.6.

발포 Al5Si4Cu4Mg 알루미늄 합금이 충진된 304 스테인리스강 원통의 굽힘저항 특성 (Bending Behaviors of Stainless Steel Tube Filled with Al5Si4Cu4Mg Closed Cell Aluminum Alloy Foam)

  • 김엄기;이효진;조성석
    • 대한기계학회논문집A
    • /
    • 제27권10호
    • /
    • pp.1686-1694
    • /
    • 2003
  • The foam-filled tube beams can be used for the front rail and firewall structures to absorb impact energy during frontal or side collision of vehicles. In the case of side collision where bending is involved in the crushing mechanism, the foam filler would be effective in maintaining progressive crushing of the thin-walled structures so that much impact energy could be absorbed. In this study, bending behaviors of the closed-cell-aluminum-alloy-foam-filled stainless steel tube were investigated. The various foam-filled specimens including piecewise fillers were prepared and tested. The aluminum-alloy-foam filling offered the significant increase of bending resistance. Their suppression of the inward fold formation at the compression flange as well as the multiple propagating folds led to the increase of load carrying capacity of specimens. Moreover, the piecewise foams would provide the easier way to fill the thin-walled shell structures without the drawback of strength.

OpenFOAM을 이용한 직사각형 개수로 흐름의 LES (Large Eddy Simulation of Rectangular Open-Channel Flow using OpenFOAM)

  • 반채웅;최성욱
    • 대한토목학회논문집
    • /
    • 제34권3호
    • /
    • pp.833-840
    • /
    • 2014
  • 본 연구에서는 OpenFOAM에서 제공하는 소스 코드를 이용하여 폭-수심비가 2인 직사각형 개수로 흐름에 대해 수치모의를 수행하였다. 여과된 연속 방정식과 운동량 방정식을 해석하기 위하여 큰 와 수치모의를 이용하였고, 비등방성 잔여 응력항을 산정하기 위하여 Smagorinsky 모형(1963)을 사용하였다. LES 모형을 Tominaga et al. (1989)의 폭-수심비가 2인 실험수로에 적용하고 평균흐름 및 난류량을 비교하였다. 추가로 Nezu and Rodi (1985)의 실험 결과와 Shi et al. (1999)의 LES 모의 결과와 함께 비교를 수행하였다. 비교 결과 평균흐름 및 난류량 모두 기존 실험 및 모의 결과를 잘 재현하는 것으로 확인되었다. 특히 이차흐름 분포도에서 측벽과 자유수면의 접합부에서 발생하는 내부이차흐름이 발생하는 것을 확인하였다. 또한 수심방향 난류강도의 경우 측벽과 바닥벽에서 난류강도의 등치선도가 측벽과 바닥벽의 접합부 방향으로 편향되는 현상을 확인하였다.

Al-Si 합금 융체로부터 순 실리콘의 원심분리 추출 (Extraction of Pure Si from an Al-Si Alloy Melt during Solidification by Centrifugal Force)

  • 조주영;강복현;김기영
    • 대한금속재료학회지
    • /
    • 제49권11호
    • /
    • pp.874-881
    • /
    • 2011
  • The present study describes a new technique to extract the primary silicon from an Al-Si alloy melt using centrifugal force during its solidification. The primary silicon was separated from an Al-50 wt.%Si alloy by centrifugal force in the form of a foam, which facilitated subsequent acid leaching to extract the pure silicon due to its wide surface area. The foam recovery after centrifugal separation was decreased as centrifugal acceleration was increased. The final recovery after acid leaching became closer to the solid fraction of the alloy, which was calculated from the Al-Si binary phase diagram, with increasing centrifugal acceleration due to the effective removal of the attached Al on the foam. The purity of the primary silicon obtained by the centrifugal separation method was over 99.99%, with only aluminum being also present.

Processing and Mechanical Properties of Ni-Cr and Ni-Cr-Al Foams by Pack-Cementation

  • ;최희만
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.19.1-19.1
    • /
    • 2009
  • Open-cell Ni-Cr and Ni-Cr-Al(with gamma/gamma prime microstructure typical of Bi-base super alloys) foams are manufactured by pack-cementation at $1000{\boxplus}$degrees C, followed by homogenization at $1200{\boxplus}C$. The resulting alloyed foams retain the low relative densities (less than 3.5 wt.%). The oxidation behavior of Ni-Cr foams turns out to be identical to that of bulk Ni-Cr alloys, after taking into account the foam's higher surface area. The room-temperature compressive behavior of the Ni-Cr and Ni-Cr-Al is compared to model predictions. Additionally, the foam creep behavior, measured between 680 and $825{\boxplus}C$ in the stress range of 0.1-0.3 MPa, compared to two analytical models, namely strut compression and strut bending as high-temperature deformation modes.

  • PDF

Investigating dynamic stability of metal foam nanoplates under periodic in-plane loads via a three-unknown plate theory

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.
    • Advances in aircraft and spacecraft science
    • /
    • 제6권4호
    • /
    • pp.297-314
    • /
    • 2019
  • Dynamic stability of a porous metal foam nano-dimension plate on elastic substrate exposed to bi-axial time-dependent forces has been studied via a novel 3-variable plate theory. Various pore contents based on uniform and non-uniform models have been introduced. The presented plate model contains smaller number of field variables with shear deformation verification. Hamilton's principle will be utilized to deduce the governing equations. Next, the equations have been defined in the context of Mathieu-Hill equation. Correctness of presented methodology has been verified by comparison of derived results with previous data. Impacts of static and dynamical force coefficients, non-local coefficient, foundation coefficients, pore distributions and boundary edges on stability regions of metal foam nanoscale plates will be studied.

금속 분말을 이용한 합금폼 제조 및 특성 (Fabrication and Properties of Alloy Foam Materials using Metal Powders)

  • 최내현;김구환
    • 한국분말재료학회지
    • /
    • 제17권6호
    • /
    • pp.489-493
    • /
    • 2010
  • Nickel-based and iron-based alloys have been developed and commercialized for a wide range of high performance applications at severely corrosive and high temperature environment. This alloy foam has an outstanding performance which is predestinated for diesel particulate filters, heat exchangers, and catalyst support, noise absorbers, battery, fuel cell, and flame distributers in burners in chemical and automotive industry. Production of alloy foam starts from high-tech coating technology and heat treatment of transient liquid-phase sintering in the high temperature. These technology allow for preparation of a wide variety of foam compositions such as Ni, Cr, Al, Fe on various pore size of pure nickel foam or iron foam in order for tailoring material properties to a specific application.

바텀애시 골재와 기포를 이용한 경량 콘크리트의 역학적 특성에 대한 재현성 평가 (Evaluation of Reproducibility for Mechanical Properties of Lightweight Concrete using Bottom Ash Aggregates and Foam)

  • 지구배;문주현;양근혁
    • 한국건설순환자원학회논문집
    • /
    • 제7권3호
    • /
    • pp.202-209
    • /
    • 2019
  • 이 연구의 목적은 저량의 기포가 혼입된 바텀애시 골재 기반 경량 콘크리트(Lightweight concrete made using bottom ash aggregates and foam, LWC-BF)의 압축강도 발현 및 역학적 특성에 대한 재현성 평가이다. 이를 위해 Ji et al.에 의해 수행되었던 동일한 배합표를 기준으로 총 6 배합을 수행하였다. 배합에서의 주요변수는 기포 혼입율과 물-결합재 비로서 각각 0~25% 및 25~30%로 변화하였다. 굳지 않은 콘크리트에서 초기 슬럼프, 슬러리 밀도와 굳은 콘크리트에서 재령별 압축강도, 쪼갬인장강도 및 파괴계수는 재현성 평가대상 이전 실험결과와 대체적으로 비슷하였다. 따라서, LWC-BF의 압축강도 및 역학적 특성은 기포 혼입에 의한 배합관리가 어려움에도 불구하고 그 재현성이 비교적 우수하였다.

소실모형주조법으로 제조한 박판형 Al-Si합금에서의 주형 충전 및 기계적 성질 (Mold Filling and Mechanical Properties of Thin Sectioned Al-Si Alloy Fabricated by Lost Foam Casting Process)

  • 김정민;이재철;최진영;조재익;최경환
    • 한국주조공학회지
    • /
    • 제37권6호
    • /
    • pp.186-192
    • /
    • 2017
  • The lost foam casting method was used to fabricate Al-Si alloy thin sheet specimens; the effects of chemical composition and process variables on the mold filling and mechanical properties were investigated. The mold filling capability was observed to be proportional to the pouring temperature, and both the vibration imposed during the casting and the application of a pattern coating had rather negative effects. The mold filling capability also decreased with the addition of Mg or TiB. When the Mg content increased, the tensile strength of the cast alloy was enhanced, but the elongation decreased. However, after T6 heat treatment, both the strength and the elongation were improved. TiB addition for grain refining or pattern coating did not significantly affect the tensile properties.