• 제목/요약/키워드: Al droplet

검색결과 53건 처리시간 0.017초

직접분사식 엔진내의 분무/벽 충돌 현상에서 텀블 효과에 관한 연구 (A Numerical Study of Tumble Effect on Spray/wall Impingement in the D. I. Engines)

  • 채수;양협;유수열;유홍선
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.45-57
    • /
    • 2002
  • In this paper, the results gained by applying many impingement models to the cylinder and flat plate were analyzed in comparison with the experimental data to study a spray/wall interaction phenomena. To begin with, the behavior of spray injected normal to the wall was analysed using three different impingement models ; Naber and Reitz model(NR model), Watkins and Wang model(WW model) and Park and Watkins model(PW model) in the present calculation. The results obtained from these models were compared with experimental data of Katsura et. al. The results indicated that PW model was in better agreement with experimental data than the NR and WW model. Also f3r spray injected at 30DEG , the result of three models were compared with experimental data of Fujimoto et. al. The results showed that m model overpredicted the penetration in the radial direction because this model was based on the inviscid jet analogy. WW model did not predicted the radius and height of the wall spray effectively. It might be thought that this discrepancy was due to the lack of consideration of spray film velocity occurred at impingement site. The result of PW model agrees with the experimental data as time goes on. In particular, a height of the spray droplets was predicted more closely to the experimental data than the other two models. The results of PW model in which the spray droplets were distributed densely around the edge of droplet distribution shaped in a circle had an agreement with the experimental data of Fujimoto et. al. Therefore, it was concluded that PW model performed better than M and WW model for prediction of spray behavior. The numerical calculation using PW model performed to the cylinder similar to the real shape of DI engine. The results showed that vortex strength near the wall in the cylinder was stronger than that in the case of flat plate. Contrary to the flat plat, an existence of the side wall in the cylinder caused the tangential velocity component to be reduced and the normal velocity component to be increased. The flow tends to rotate to the inside of cylinder going upward to the right side wall of cylinder gradually as time passes. Also, the results showed that as the spray angle increases, the gas velocity distribution and the tumble flow seemed to be formed widely.

한우에서 Computer aided semen analysis(CASA) 기법을 이용한 수태율 예측에 관한 연구 (Studies on the use of computer aided semen analysis(CASA) technology for fertility prediction in Korean native cattle)

  • 이강남;이병천;황우석
    • 대한수의학회지
    • /
    • 제38권4호
    • /
    • pp.882-897
    • /
    • 1998
  • This experiment was conducted to predict the effects of motional characteristics on the fertility of Korean native cattle(KNC) by using CASA technology and in vitro fertilization system. Twenty-six KNC frozen semen straws were obtained from Korean KNC improvement department, livestock improvement main division, national livestock cooperatives federation in Korea. Specimens were allowed to thaw at $37^{\circ}C$ for 30 sec in water bath. Semen analysis was performed on semen image analysis system(SIAS, Medical supply, Korea) adjusted to the gate settings and used the semen droplet ($5{\mu}l$) placed on Makler counting chamber(Sefi medical instrument, Israel) prewarmed at $37^{\circ}C$. The same person used the same micropipette to fill the Makler counting chamber. A total of 150 or more of sperms were analysed in each specimen by a single trained person by scanning at least 5 to 10 fields. The oocytes collection, in vitro maturation, IVF, in vitro culture and determination of the cleavage rate were performed by the technique, as described by Hwang et al (1997). Statistical analysis was done by linear regression with use of the Sigma plot program on a IBM personal computer. The cleavage rate in vitro fertilized oocyte was significantly correlated(P<0.05) with MOT, VCL, VSL, VAP, ALH, BCF and MAD, but not CON, LIN, STR, WOB, DNM, DNC and HYP in regressional analysis. The results show that some kinematic characteristics of frozen-thawed semen by CASA can be predict the fertility in in vitro model system.

  • PDF

IODINE REMOVAL EFFICIENCY IN NON-SUBMERGED AND SUBMERGED SELF-PRIMING VENTURI SCRUBBER

  • Ali, Majid;Yan, Changqi;Sun, Zhongning;Gu, Haifeng;Wang, Junlong;Khurram, Mehboob
    • Nuclear Engineering and Technology
    • /
    • 제45권2호
    • /
    • pp.203-210
    • /
    • 2013
  • The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH) and sodium thiosulphate ($Na2S_2O_3$) in water to remove the gaseous iodine ($I_2$) from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine for submerged and non-submerged operating conditions. In the non-submerged venturi scrubber, only the droplets take part in iodine removal efficiency. However, in a submerged venturi scrubber condition, the iodine gas is absorbed from gas to droplets inside the venturi scrubber and from bubbles to surrounding liquid at the outlet of a venturi scrubber. Experimentally, it is observed that the iodine removal efficiency is greater in the submerged venturi scrubber as compare to a non-submerged venturi scrubber condition. The highest iodine removal efficiency of $0.99{\pm}0.001$ has been achieved in a submerged self-priming venturi scrubber condition. A mathematical correlation is used to predict the theoretical iodine removal efficiency in submerged and non-submerged conditions, and it is compared against the experimental results. The Wilkinson et al. correlation is used to predict the bubble diameter theoretically whereas the Nukiyama and Tanasawa correlation is used for droplet diameter. The mass transfer coefficient for the gas phase is calculated from the Steinberger and Treybal correlation. The calculated results for a submerged venturi scrubber agree well with experimental results but underpredicts in the case of the non-submerged venturi scrubber.