• 제목/요약/키워드: Al casting alloy

검색결과 370건 처리시간 0.022초

Ti 및 TiAl 주조재의 ${\alpha}$-case 형성에 미치는 공정변수에 대한 영향 (Effects of Process Parameter on Alpha-Case Formation of Ti and TiAl castings)

  • 이상화;김명균;성시영;김영직
    • 한국주조공학회지
    • /
    • 제23권3호
    • /
    • pp.137-146
    • /
    • 2003
  • The main purpose of this study is to investigate the effects of process parameter on alpha-case formation of Ti and TiAl castings. The previous studies showed that the molten titanium is excessively reactive to the refractory oxide mold, resulting in alpha-caes of the titanium castings regardless of composition of titanium alloys. However, the behavior of the alpha-case formation of TiAl alloy is not consistent with conventional titanium alloy. In order to investigate the alpha-case formation of Ti and TiAl castings with process parameter, especially the associated factors of investment mold such as mold material, binder and mold preheating temperature. An attempt has been made to characterize the alpha-case of titanium casting by using optical microscope, EDS, XRD, EMPA and hardness profiles. The formation of the alpha-case on the surface of pure titanium during investment casting was rather by that of solid solution with metallic element from mold material. The required mold strength was obtained with $CaZrO_3$ because of the possibility of using water soluble binder. However, the separation phenomenon between facing and back-up mold materials should be considered. The interfacial reaction of TiAl alloy showed different behavior from that of pure titanium and $Al_2O_3$ was best mold materials. The effect of binder as well as mold material on the formation of alpha-case was significant.

Mg-8%Al 주조 합금의 부식 거동에 미치는 Zn 첨가의 영향 (Effect of Zn Addition on Corrosion Behavior of Mg-8%Al Casting Alloy)

  • 황인제;문정현;전중환;김영직
    • 한국주조공학회지
    • /
    • 제35권3호
    • /
    • pp.53-61
    • /
    • 2015
  • Effects of Zn addition on the microstructure and corrosion behavior of Mg-8%Al-(0-1)%Zn casting alloys were investigated. With increasing Zn content, the amount of ${\beta}(Mg_{17}Al_{12})$ phase increased, while ${\alpha}$-(Mg) dendritic cell size became reduced. The corrosion rate decreased continuously with the increase in the Zn content. The evaluation of the microstructural evolution indicates that the improved barrier effect of ${\beta}$ particles formed more continuously along the dendritic cell boundaries and the incorporation of more ZnO into the surface corrosion product, by which the absorption of $Cl^-$ ions is impeded, are responsible for the better corrosion resistance in relation to the Zn addition.

Squeeze Casting에 의한 Al-SiCp 복합재료의 제조 조건에 관한 연구 (A Study on Fabrication Conditions of Al-SiCp Composites by Squeeze Casting)

  • 김석원;우기도;한상원
    • 한국주조공학회지
    • /
    • 제14권5호
    • /
    • pp.471-479
    • /
    • 1994
  • Al-2%Si-2%Mg alloy containing SiC particle in 20, $70{\mu}m$ were prepared by mean of squeeze casting with various pressure 50, 100, 150 and 220MPa respectively. The specimens were made by casting into $50{\Phi}{\times}100{\ell}$ mold under various squeeze conditions(pressures, pressurizing temperature, particle sizes). Mechanical properties(hardness, tensile strength, elongation and wear characteristics) were evaluated at room temperature with those various fabrication factors. It became feasible to make favorable Al-SiCp composite free from casting defects by the injection of Ar gas during melting and 100MPa pressure squeeze casting. However, pressure of 50MPa was not sufficient to avoid completely porosity formation as a result of precessing and shrinkage during solidification. As the particle size is smaller and the squeeze pressure is higher, the hardness and tensile strength at room temperature are higher. Cell size became smaller gradually with increase of squeeze pressure. With increase of squeeze pressure(MPa), wear behaviors of those composites were changed from adhesive into abrasive wear, and the tendency of above behavior became outstanding with increasing sliding speed. The chemical reaction(4Al+3SiC${\rightarrow}$$Al_4C_3+3Si$) is more accelerated at interface between SiCp and matrix with increase of squeeze pressure. Therefore $Al_4C_3$ intercompound and Si peak intensity is increased at interface.

  • PDF

Al-Si 합금의 소성변형 거동 (Plastic Deformation Behavior of Al-Si Alloy)

  • 권용남;김상우;이영선;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.130-133
    • /
    • 2005
  • The effect of microstructural characteristics of A356 alloys on tensile behavior was studied ill the present study. To authors' knowledge, the microstructural effect on mechanical properties of A356 alloy has not been well understood even though this alloy system is one of the most widely used alloys for the industrial purpose. Specially, quantitative relationship between properties like ductility and fracture toughness with microstructural features is lacking. In the present study, three processing routes was used to fabricate samples with different microstructures like size and distribution of primary alpha and eutectic phases. Also, compressive deformation was used to close casting porosity for the cast samples. Tensile behavior was examine and discussed in terms of microstructural aspects.

  • PDF

자동차 경량화를 위한 다이캐스팅용 알루미늄합금 브레이크 페달의 강도해석 (Strength Analysis of Die-cast Aluminum-alloy Brake Pedals for use in Lightweight Cars)

  • 조승현;장준영
    • 한국생산제조학회지
    • /
    • 제25권2호
    • /
    • pp.138-142
    • /
    • 2016
  • In this study, a strength analysis was performed to assess die-cast aluminum alloy brake pedals as an improved alternative to wrought alloys. Aluminum brake pedal shapes are considered to be suitable for the die-casting process. The strength criterion of Volvo trucks was used as the criterion for the pedal strength. The results of this analysis showed that the frame thickness of the aluminum brake pedal must be increased from 12 mm to 18 mm to have a strength superior to that of a steel brake pedal. Additionally, the stress and weight of the aluminum brake pedal were found to be approximately 24% and 26% lower than those of the steel brake pedal, respectively. Mounting tests and strength assessments verified that the proposed die-cast aluminum alloy brake pedal demonstrated sufficient strength.

스칸듐을 첨가한 7000 계열 알루미늄 합금의 기계적 특성 (Mechanical Properties of 7000 Series Aluminium Alloys with Scandium Addition)

  • 이경환;조수연
    • 한국주조공학회지
    • /
    • 제32권4호
    • /
    • pp.181-189
    • /
    • 2012
  • The microstructures of self-designed 7000 series Aluminium alloys added with Sc are observed. Moreover, the mechanical properties of the Sc-added Aluminium alloys are evaluated as a function of tensile temperature to establish the conditions of a following extrusion process. New casting conditions in the aluminium alloys added with Sc could be established by changing the casting speed and stirring time in the existing casting conditions of Aluminium alloys. The Sc addition results in $Al_3(Sc,Zr)$ precipitates in the cast alloys, and leads to the formation of equal-axed grains and fine grains. After homogenization heat treatment at $450^{\circ}C$, the Sc-added Aluminium alloys showed the highest elongation values in the temperature ranging from $300{\sim}400^{\circ}C$.

Mg-5Al-2Si 합금의 조직 및 부식특성에 미치는 Sb, Sr 첨가의 영향 (Effect of Sb and Sr Addition on Corrosion Properties of Mg-5Al-2Si Alloy)

  • 전종진;이상원;김병호;박봉규;박용호;박익민
    • 대한금속재료학회지
    • /
    • 제46권5호
    • /
    • pp.304-309
    • /
    • 2008
  • Magnesium alloys containing $Mg_2Si$ particles, as a promising cheap heat-resistant magnesium alloy for automobile power train parts applications, are attracting more attention of both material scientists and design engineers. Modification of the Chinese script shape $Mg_2Si$ particle is a key for using this alloy in sand or permanent mould casting. In the present work, the modification effect of Sr and Sb on the corrosion properties of the Mg-5Al-2Si alloy was investigated. Sr or Sb addition promoted the formation of fine polygonal shape $Mg_2Si$ particles by providing the nucleation sites. Sr was more effective element than Sb for shape modification of Chinese script shape $Mg_2Si$. Such improved microstructure of the modified alloy resulted in large improvement in corrosion resistance as compared to unmodified Mg-5Al-2Si alloy.

응고 시뮬레이션에 의한 박육 알루미늄 다이캐스팅 금형 방안의 최적화 (Optimization of the Thin-walled Aluminum Die Casting Die Design by Solidification Simulation)

  • 김영찬;최세원;조재익;정창열;강창석
    • 한국주조공학회지
    • /
    • 제28권4호
    • /
    • pp.190-194
    • /
    • 2008
  • Thin-walled die casting of aluminum notebook computer housing with less than 1mm thickness was investigated by using computational solidification simulation and actual casting experiment. Three different types of gate design, finger, tangential and split type, were used and the results showed that sound thin-walled die casting was possible with tangential and split type gating design because those gates allowed aluminum melt flowed into the thin-wall cavity uniformly and split type gating system was preferable gating design than tangential type at the point of view of soundness of casting and distortion generated after solidification. Also, solidification simulation agreed well with the actual die-casting and the casting showed no casting defect and distortion.

Fe가 첨가된 과공정 Al-Si-Fe합금 압출재의 기계적특성 및 미세조직에 관한 연구 (Effect of Fe Addition on Mechanical Properties and Microstructure of As-Extruded Hypereutectic Al-Si-Fe Alloy)

  • 이세동;김덕현;백아름;임수근
    • 소성∙가공
    • /
    • 제28권3호
    • /
    • pp.123-129
    • /
    • 2019
  • Hypereutectic Al-Si alloys have been widely utilized for wear-resistant components in the automotive industry. In order to expand the application of Hypereutectic Al-Si alloys, the addition of alloying elements forming a stable precipitate at high temperature is required. Thermally stable inter metallic compounds can be formed through the addition of transition elements such as Fe, Ni to Al alloys. However, the amount of transition element to be added to Al alloys is limited due to their low solid solubility. Also, hypereutectic Al-Si-Fe alloys form coarse primary Si phases and needle-shaped intermetallic compounds during solidification in the general casting processes. In this study, the effects of the destruction of Intermetallic compound and Si phase are investigated via hot extrusion. Both the microstructure and mechanical properties are discussed under different extrusion conditions.

Effect of Microporosity on Tensile Properties of As-Cast AZ91D Magnesium Alloy

  • 이충도
    • 소성∙가공
    • /
    • 제8권3호
    • /
    • pp.283-283
    • /
    • 1999
  • In the present study, the effect of microporosity on the tensile properties of as-cast AZ91D magnesium alloy was investigated through experimental observation and numerical prediction. The test specimens were fabricated by die-casting and gravity-casting. For gravity-casting, the inoculation and use of various metallic moulds were applied to obtain a wide range of microporosity. The deficiency of the interdendritic feeding of the liquid phase acted as d dominant mechanism on the formation of the micropores in the Mg-Al-alloys, rather than the evolution of hydrogen gas. Although tensile strength and elongation has a nonlinear and very intensive dependence upon microporosity, the yield strength appeared to have a linear relationship with microporosity. However, it was possible to quantitatively estimate the linear contribution of microporosity on the individual tensile property far a range of microporosity, which was below about B %. The numerical prediction suggests that the effect of microporosity on fractured strength and elongation decreased as the strain hardening exponent increased. Furthermore. the shape and distribution of micropores may play a more dominant role than local plastic deformation on the tensile behavior of AZ9lD alloy.