• Title/Summary/Keyword: Al alloy metal

Search Result 574, Processing Time 0.025 seconds

Brazing of Aluminium Nitride(AlN) to Copper with Ag-based Active Filler Metals (은(Ag)계 활성금속을 사용한 질화 알미늄(AlN)과 Cu의 브레이징)

  • Huh, D.;Kim, D.H.;Chun, B.S.
    • Journal of Welding and Joining
    • /
    • v.13 no.3
    • /
    • pp.134-146
    • /
    • 1995
  • Aluminium nitride(AlN) is currently under investigation as potential candidate for replacing alumium oxide(Al$_{2}$ $O_{3}$) as a substrate material for for electronic circuit packaging. Brazing of aluminium nitride(AlN) to Cu with Ag base active alloy containing Ti has been investigated in vacuum. Binary Ag$_{98}$ $Ti_{2}$(AT) and ternary At-1wt.%Al(ATA), AT-1wt.%Ni(ATN), AT-1wt.% Mn(ATM) alloys showed good wettability to AlN and led to the development of strong bond between brate alloy and AlN ceramic. The reaction between AlN and the melted brazing alloys resulted in the formation of continuous TiN layers at the AlN side iterface. This reaction layer was found to increase by increase by increasing brazing time and temperature for all filler metals. The bond strength, measured by 4-point bend test, was increased with bonding temperature and showed maximum value and then decreased with temperature. It might be concluded that optimum thickness of the reaction layer was existed for maximum bond strength. The joint brazed at 900.deg.C for 1800sec using binary AT alloy fractured at the maximum load of 35kgf which is the highest value measured in this work. The failure of this joint was initiated at the interface between AlN and TiN layer and then proceeded alternately through the interior of the reaction layer and AlN ceramic itself.

  • PDF

A Study on Strength Characteristic Variation as amount of Plastic Deformation and Strength Anisotrophy for ECAP Al 2024 Alloy (ECAP Al 2024 합금의 소성변형량에 따른 강도 특성 및 이방성 연구)

  • Choi J. W.;Ma Y. W.;Yoon K. B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.283-286
    • /
    • 2005
  • When subjected to severe shear deformation by ECAP, microstructure of Al2024 becomes nanocrystalline grained texture material. To measure the strength of that, small punch (SP) testing method was adopted as a substitute for the conventional uniaxial tensile testing because the size of material processed by ECAP were limited to $\varphi12mm$ in transverse direction. SP tests were performed with specimens in longitudinal and transverse directions of Al 2024 ECAP metal. For comparing the strength values with those assessed by SP tests, uniaxial tensile tests were also conducted with specimens in longitudinal direction. Failure surfaces of the tested SP specimens showed that failure mode was shear deformation and Al 2024 ECAP metal has an anisotropy in strength. Thus, conventional equations proposed for assessing the strength characteristics were improper to assess those of Al2024 ECAP metal. In this paper a way of assessing the strength of Al 2024 ECAP metal was proposed and was proven to be effective.

  • PDF

Investigations on electron beam weldability of AlZnMgCu0.5 alloys (AlZnMgCu0.5 합금의 Electron Beam 용접성에 관한 연구)

  • 배석천
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.166-177
    • /
    • 1997
  • The high strength AlZnMgCu0.5 alloy is a light metal with good age hardenability, and has a high tensile and yielding strength. Therefore, it can be used for structures requiring high speciple strength. Even though high strength AlZnMgCu alloy has good mechanical properties, it has a lot of problems in TIG and MIG welding processes. Since lots of high heat absorption is introduced into the weldment during TIG and MIG processes, the microstructural variation and hot cracks take place in heat affected zone. Therefore, the mechanical properties of high strength AlZnMgCu0.5 alloy can be degraded in weldment and heat affected zone. Welding process utilizing high density heat source such as electron beam should be developed to reduce pore and hot cracking, whichare usually accompanied by MIG and TIG welding processes. In this work, electron beam welding process were used with or without AlMg4.5Mn as filler material to avoid the degradation of mechanical properties. Mechanical and metallurgical characteristics were also studied in electron beam weldment and heat affected zone. Moreover hot cracking mechanism was also investigated.

  • PDF

Cyclic Oxidation Behavior of Fe-Cr-Al Joint Brazed with Nickel-Base Filler Metal (Ni계 합금으로 브레이징된 Fe-Cr-Al 합금 접합부의 주기산화거동)

  • Mun, Byeong-Gi;Choe, Cheol-Jin;Park, Won-Uk
    • 연구논문집
    • /
    • s.29
    • /
    • pp.141-149
    • /
    • 1999
  • Brazing of Fe-Cr-Al alloy was carried out at $1200^{\circ}C$ in vacuum furnace using nickel-based filler metals : BNi-5 powder(Ni-Cr-Si-Fe base alloy} and MBF-50 foil (Ni-Cr-Si-B). The effect of boron content on the stability of oxide scale on the brazed joint was investigated by means of cyclic oxidation test performed at $1050^{\circ}C$ and $1200^{\circ}C$. Apparently, the joints brazed with MBF-50 containing boron showed relatively stable oxidation rates compared to boron-free BNi-5 at both temperatures. However, it was considered that the slower weight loss of MBF-50 brazed specimen wasn’t resulted from the low oxidation rate but from the spallation of oxide layer. The oxide layer consisted of thick spinel oxide on the surface and $Al_2 O_3$ internal oxide layer along the interface between mother alloy and braze, the mother alloy was also eroded seriously by the formation of spinel oxides such as $FeCr_2 O_4$ and $NiCr_2 O_4$ on the surface, likely to be induced by the change of oxide forming mechanism due to diffusion of boron from the braze. On the contrary, the joint brazed with BNi-5 showed the good oxidation resistance during the cyclic oxidation test. It seems that the oxidation can be retarded by the formation of stable $Al_2 O_3$ layer at the surface.

  • PDF

Development of P/M Aluminum Alloy with Fine Microstructure

  • Tokuoka, Terukazu;Kaji, Toshihiko;Nishioka, Takao
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.712-713
    • /
    • 2006
  • We successfully developed Al-Si-Transition Metal (TM) -Rare Earth (RE) Powder Metallurgy (P/M) alloy with fine microstructure, which has high strength at high temperature. This material was compacted rapidly solidified powder and directly consolidated by hot extruding or forging. Before consolidating, rapid heating was performed on powder compaction in order to keep the fine microstructure in powder state. We have also investigated the processing conditions of this new alloy by computing simulations and experiments.

  • PDF

Corrosion Mechanism According to Localized Damage of Zn-Al-Mg Alloy Coated Steel Sheet Used in Plant Farm (플랜트팜용 3원계 (Zn-Al-Mg) 합금도금 강판의 국부손상에 따른 부식 메커니즘)

  • Jin Sung Park;Jae Won Lee;Sung Jin Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.123-130
    • /
    • 2023
  • This study aimed to evaluate corrosion resistance of steel coated with GI and Zn-Al-Mg alloy using cyclic corrosion test (CCT) with electrochemical polarization and impedance measurements. Results showed that the Zn-Al-Mg alloy coated steel had a much higher corrosion rate than GI coated steel in early stages of corrosion. With prolonged immersion, however, the corrosion rate of the Zn-Al-Mg alloy coated steel greatly decreased, mainly owing to a significant decrease in the cathodic reduction reaction and an increase in polarization resistance at the surface. This was closely associated with the formation of protective corrosion products including Zn5(OH)8Cl2·H2O and Zn6Al2(OH)16CO3. Moreover, when the steel substrate was locally exposed due to mechanical damage, the kinetics of anodic dissolution from the coating layer and the formation of protective corrosion products on the surface of the Zn-Al-Mg alloy coated steel became much faster compared to the case of GI coated steel. This could provide a longer-lasting corrosion inhibition function for Zn-Al-Mg alloy coated steel used in plant farms.

A mechanical proprties and fatigue life of aluminum alloy sheets for autobodies (자동차 차체용 알루미늄 합금 판재의 기계적특성과 부식피로수명)

  • 박인덕;윤옥남;남기우
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.57-69
    • /
    • 1997
  • The objetive of this study is to compare the mechanical proprties of 6000 series Al-Mg-Si aluminum alloy (AC120) with 5000 series Al-Mg aluminum alloy (TG25), and to investigate the influence of corrosion solution for fatigue life. Comparing of TG25 and AC120 alloy sheets, TG25 alloy sheets showing higher plastic ratio and total elongation have better formability than AC120 alloy sheets. The hardness of nugget area was a little higher than that of base metal area. Also, grain coarsening was observed in HAZ(Heat Affected Zone). In a corrosion fatigue experiment, the fatigue life decreased as concentration increased, when a dipping time was constant. The life decreased as dippling time increased, when a concentration was constant.

  • PDF

New Process for Ti Alloy Powder Production by Using Gas Atomization

  • Fujita, Makoto;Arimoto, Nobuhiro;Nishioka, Kazuo;Miura, Hideshi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.12-13
    • /
    • 2006
  • The spherical and high quality Titanium fine powder "Tilop" has been produced with gas atomization furnace, Sumitomo Titanium Corporation originally designed. Recently, a new process which can produce Ti-alloy(Ti-6Al-4V) powders by utilizing our gas atomization process, of which raw material is sponge titanium pre-mixed with alloy chips or granules has been also developed. The particle size of gas atomized Ti-alloy powder and the mechanical properties of sintered Ti-alloy compacts prepared by metal injection molding were discussed in this study.

  • PDF

A Study on the Burr Formation in Shearing with Al Alloy (Al 합금의 전단작업시 발생하는 버어에 관한 연구)

  • Ko, Dae-Lim;Jung, Dong-Won;Kim, Jim-Moo;Lee, Kyung-Sick
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.2
    • /
    • pp.17-21
    • /
    • 2007
  • Shearing including punching, blanking, trimming, slitting, etc is one of the most frequently used processes in sheet metal manufacturing. It has been widely used for manufacturing autobody, electronic components, aircraftbody, etc. In this paper, it has been researched by the experiment to examine the effect of burr height corresponding to die clearance, cutting angle, tool sharpness, etc. This paper presents the experimental results with using Al alloy sheet.

  • PDF

A Study on the Improvement of Fatigue Strength in Particulate Reinforced Metal Matrix Composites at Elevated Temperatures (입자강화 금속기 복합재료의 고온 피로강도 향상에 관한 연구)

  • Sin, Hyeong-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1146-1154
    • /
    • 2000
  • Fatigue strength of NiAl and Ni$_3$Al particulate reinforced aluminum alloy composites fabricated by the diecasting method was examined at room and elevated temperatures. The results were compared wit h that of SiC particulate reinforced one. The particulate reinforced composites showed some improvement in the static and fatigue strength at elevated temperatures when compared with that of Al alloy. The composites reinforced by intermetallic compound particles showed good fatigue strengths at elevated temperatures especially $Ni_3AI_{p}/Al$ alloy composite showed good fatigue limit up to high temperature of 30$0^{\circ}C$. Adopting intermetallic compound particle as a reinforcement phase, it will be possible to develop MMC representing better fatigue property at elevated temperature.