• Title/Summary/Keyword: Al Hydrolysis

Search Result 138, Processing Time 0.024 seconds

Study of Hydrolysis of Al Powder and Compaction of Nano Alumina by Spark Plasma Sintering(SPS) (Al 분말의 수화 반응과 스파크 플라즈마 열처리법으로 제조된 알루미나 성형체 연구)

  • Uhm Y. R.;Lee M. K.;Rhee C. K.
    • Journal of Powder Materials
    • /
    • v.12 no.6 s.53
    • /
    • pp.422-427
    • /
    • 2005
  • The $Al_2O_3$ with various phases were prepared by simple ex-situ hydrolysis and spark plasma sintering (SPS) process of Al powder. The nano bayerite $(\beta-Al(OH)_3)$ phase was derived by hydrolysis of commercial powder of Al with micrometer size, whereas the bohemite (AlO(OH)) phase was obtained by hydrolysis of nano Al powder synthesized by pulsed wire evaporation (PWE) method. Compaction as well as dehydration of both nano bayerite and bohemite was carried out simultaneously by SPS method, which is used to fabricate dense powder compacts with a rapid heating rate of $100^{\circ}C$ per min. under the pressure of 50MPa. After compaction treatment in the temperature ranges from $100^{\circ}C\;to\; 1100^{\circ}C$, the bayerite and bohemite phases change into various alumina phases depending on the compaction temperatures. The bayerite shows phase transition of $Al(OH)_3{\to}{\eta}-Al_2O_3{\to}{\theta}-Al_2O_3{\to}\alpha-Al_2O_3$ sequences. On the other hand, the bohemite experiences the phase transition from AlO(OH) to ${\gamma}-Al_2O_3\;at\;350^{\circ}C.$ It shows AlO(OH) ${\gamma}-Al_2O_3{\to}{\delta}-Al_2O_3{\to}{\alpha}-Al_2O_3$ sequences. The ${\gamma}-Al_2O_3$ compacted at $550^{\circ}C$ shows a high surface area $(138m^2/g)$.

Evaluation of effect of rapid mixing intensity on chemical phosphorus removal using Al hydrolysis speciation (가수분해 산물 분포를 이용한 급속혼화강도가 화학적 인 제거 효율에 미치는 영향의 규명)

  • Kim, Seung-Hyun;Yoon, Dong-Soo;Moon, Byung-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.367-373
    • /
    • 2011
  • Mechanism of rapid mixing effect on chemical phosphorus removal is evaluated in this study. Assuming that chemical phosphorus removal is unaffected by mixing time, only rapid mixing intensity is evaluated. In order to find out the mechanism, it is hypothesized that rapid mixing affects the Al hydrolysis speciation, and that formation of more monomeric species ($Al^a$) results in better removal of phosphorus. According to a ferron assay, more $Al^a$ formed at higher mixing intensity than at lower intensity. Subsequent experiments revealed that better phosphorus removal was obtained at higher intensity than at lower intensity, in terms of the molar ratio of $Al_{added}/P_{removed}$. The proposed hypothesis was proved in this study. Chemical phosphorus removal is affected by rapid mixing intensity due to its effect on the Al hydrolysis speciation.

The Effect of HCl-AlCl3(Catalyst) Concentrations on Acid Hydrolysis of Ricestraw Cellulose (염산(鹽酸)과 촉매 AlCl3의 농도가 볏짚 Cellulose의 산가수분해(酸加水分解)에 미치는 영향)

  • Lee, Byung-Guen
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.23-27
    • /
    • 1992
  • 81.9% of the cellulose delignified by acetosolv process was hydrolyzed in HCl-$AlCl_3$ hydrolysis system when $AlCl_3$ was used as catalyst in breaking down of glycosidic bond of cellulose. It was well compared that the HCl hydrolysis system without $AlCl_3$ as catalyst showed only 60~61% of the hydrolyzed yield. Also monosaccharide yield including glucose clearly increased when $AlCl_3$ was use. When concentration of HCl and $AlCl_3$ was increased, the hydrolyzed monosaccharide was increased within certain range. The monosaccharid yield out of the hydrolyzed reached 55.4% at optimum conditions which were identified as 20% of Hel solution, 0.03 Mol of $AlCl_3$, $120^{\circ}C$ of reaction temperature and 7 hours of reaction time employed in this study.

  • PDF

Preparation and Characteristics of Ceramic Composite Powders Coated with $Al_2O_3$: (I) Hydrolysis of Mixed Aluminum Salt Solution for Coating ($Al_2O_3$로 피복시킨 세라믹 복합분체의 제조 및 특성 : (I) 피복용 혼합 알루미늄 염 용액의 가수분해)

  • 현상훈;정형구
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.7
    • /
    • pp.851-860
    • /
    • 1990
  • The hydrolysis-precipitation reaction of mixed aluminum salt solutions of aluminum sulfate, aluminum nitrate, and urea has been investigated to obtain narrow-sized and unagglomerated fine spherical precipitates of aluminum hydroxide required for coating core particles. The hydrolysis-precipitatin reaction could be controlled to be appropriate to coating processes by usign urea as a pH control-agent. As the concetration of total Al3+ ion and the molar ratio of SO42-/Al3+ in starting solutions became smaller and also as the vol. ratio of water/solution for hydrolyzing mixed aluminum salt solution became larger, the morphology of precipitates tended to be more unagglomerated and spherical, while their size(0.5longrightarrow0.05${\mu}{\textrm}{m}$) to be smaller. The optimum hydrolysis condition for coating processes was to hydrolyze the mixed aluminum salt solution, in which the molar ratio of SO42-/Al3+ was 0.75, while the amount of water corresponding to the vol. ratio of water/solution of 15. The precipitate was the aluminum hydroxide which sulfate ions were strongly adsorbed on and the maximum yield in the hydrolysis-precipitation reaction was about 20%.

  • PDF

The Thermal Behavior of Transformation by Simultaneous $\alpha$-$Al_2O_3$ Seed Addition on the Al-Sec-Butoxide Hydrolysis (Al-Sec-Butoxide의 가수분해시에 있어서 $\alpha$-$Al_2O_3$종의 동시첨가에 의한 열적 전이거동)

  • 김창은;이해욱;최진관;김배연
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.6
    • /
    • pp.808-816
    • /
    • 1990
  • The thermal behavior of transformation and characteristics of seeded sample powders prepared by simultaneous $\alpha$-Al2O3 seed addition with water on the Al-sec-butoxide hydrolysis were studied. $\alpha$-Al2O3 seed particles are shown to act as nuclei for transformation of $\theta$-to $\alpha$-Al2O3 and to result in an increase in thetransformation kinetics and lowering of the transformation temperature by as much as 143$^{\circ}C$. Simultaneous seed addition on the hydrolysis resulted in uniform dispersin and creation of nucleation site on seed surface and only 0.1wt% seeding lowered the transformation temperature by as much as 115$^{\circ}C$. For 3wt% seed addition, $\alpha$-Al2O3 single phase was obtained at 95$0^{\circ}C$ for 100 minutes and the specific surface area of products were lowered to 11.9$m^2$/g as compared with that of $\alpha$-Al2O3 powder prepared without seed at 115$0^{\circ}C$ ; 15.1$m^2$/g due to depression of vermicular structure growth.

  • PDF

The Effect of pH and temperature on the Morphology of Aluminum Hydroxides formed by Hydrolysis Reaction (알루미늄의 수화 반응시 pH와 온도에 따른 형상 변화)

  • 오영화;이근회;박중학;이창규;김흥회;김도향
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.118-123
    • /
    • 2004
  • A formation of aluminum hydroxide by hydrolysis reaction in the water has been studied by using nano aluminum powder fabricated by pulsed wire evaporation(PWE) method. The hydroxide type and morphology depending on temperature and pH were examined by structural analysis. The Boehmite($Al_2O_3$.$H_2O$ or AIO(OH)) was predominantly formed in high temperature region over 4$0^{\circ}C$, while the Bayerite($Al_2O_3$.$H_2O$ or $Al(OH)_3$) below $30^{\circ}C$ of hydrolysis temperature. The Boehmite formation was preferred to the Bayerite in acidic solution in the same hydrolysis temperature. The slowly formed Bayerite phase showed facet crystalline structure, while the fast formed Boehmite was fine fiber with a large aspect ratio of several nm in diameter and several hundred nm in length, and with much larger specific surface area(SSA) than that of Bayerite. The highest SSA was about $420m^2$/g.

Effect of pH on Pore Characteristics in Synthesis of High Porous AlO(OH) Gel by Hydrolysis of Al2(SO4)3 and Na2SO4 Mixed Solution (Al2(SO4)3와 Na2SO4 혼합용액의 가수분해에 의한 고기공 AlO(OH) 겔의 합성에서 pH가 기공특성에 미치는 영향)

  • Park, Byung-Ki;Choe, Dong-Uk;Lee, Jae-Rock
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.6 s.301
    • /
    • pp.325-330
    • /
    • 2007
  • High porous AlO(OH) gel is used in precursor of ceramic material, coating material and porous catalyst. For use of these, not only physiochemical control for particle morphology, pore characteristic and peptization but also studies of synthetic method for preparation of high porous AlO(OH) gel were required. In this study, high porous AlO(OH) gel was prepared through the aging and filtration process of aluminum hydroxides gel precipitated by the hydrolysis reaction of $Na_2CO_3$ solution and $Al_2(SO_4)_3$ and $Na_2SO_4$ mixed solution. In this process, optimum synthetic condition of AlO(OH) gel having excellent pore volume as studying the effect of hydrolysis pH on gel precipitates has been studied. Hydrolysis pH brought about numerous changes on crystal morphology, surface area, pore volume and pore size. Physiochemical properties of gel were investigated as using XRD, TEM, TG/DTA, FT-IR and $N_2$ BET method.

Catalytic Decomposition of $SF_6$ by Hydrolysis and Oxidation over ${\gamma}-Al_2O_3$ (${\gamma}-Al_2O_3$ 촉매상에서 가수분해와 산화반응에 의한 $SF_6$ 촉매분해 특성)

  • Lee, Sun-Hwa;Park, No-Kuk;Yoon, Suk-Hoon;Chang, Won-Chul;Lee, Tae-Jin
    • Clean Technology
    • /
    • v.15 no.4
    • /
    • pp.273-279
    • /
    • 2009
  • $SF_6$, which has a high global warming potential, can be decomposed to sulfur and fluorine compounds through hydrolysis by $H_2O$ or oxidation by $O_2$ over solid acid catalysts. In this study ${\gamma}-Al_2O_3$ was employed as the solid acid catalyst for the abatement of $SF_6$ and its catalytic activity was investigated with respect to the reaction temperature and the space velocity. The catalytic activity for $SF_6$ decomposition by the hydrolysis reached the maximum at and above 973 K with the space velocity of $20,000\;ml/g_{-cat}{\cdot}h$, exhibiting a conversion very close to 100%. When the space velocity was lower than $45,000\;ml/g_{-cat}{\cdot}h$, the conversion was maintained at the maximum value. On the other hand, the conversion of $SF_6$ by the oxidation was about 20% under the same conditions. The SEM and XRD analyses revealed that the ${\gamma}-Al_2O_3$ was transformed to ${\alpha}-Al_2O_3$ during the hydrolysis and to $AlF_3$ during the oxidation, respectively. The size of $AlF_3$ after the oxidation was over $20\;{\mu}m$, and its catalytic activity was low due to the low surface area. Therefore, it was concluded that the hydrolysis over ${\gamma}-Al_2O_3$ was much more favorable than the oxidation for the catalytic decomposition of $SF_6$.

Effects of polymeric Al and hydrolysis products of PAC at different pH on performance of nanofiltration with PAC coagulation pretreatment (PAC 전처리 시 수소이온 농도에 따라 발생 가능한 알루미늄 종에 의한 나노여과막 성능 연구)

  • Choi, Yang-Hun;Kweon, Ji-Hyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.1
    • /
    • pp.15-24
    • /
    • 2010
  • Coagulation can be used for pretreatment of NF membrane filtration. Foulants such as organic matter and particulate can be removed effectively with the process while high flux recovery is maintained. Recently various types of polyaluminium coagulants including polyaluminium chloride(PAC) are commercially available for water treatment. This study examines effects of polymeric Al and hydrolysis products of PAC on nanofiltration membrane performance. Dominant hydrolysis products were polymeric Al, $Al(OH)_3$, and ${Al(OH)_4}^{-1}$ at acidic, neutral, and alkaline pH conditions, respectively. Under acidic pH condition, flux decline was increased with increasing PAC concentrations, possibly due to polymeric Al adsorption on membrane pore and/or surfaces. For neutral and alkaline pH conditions, little flux decline was observed with increasing PAC concentrations except the highest ${Al(OH)_4}^{-1}$ concentration, with which rapid flux decline was shown. Removal of ionic matters was also varied with pH conditions in this study. Especially, conductivity removal was substantially low and $Ca^{2+}$ concentration in the permeate was quite high at neutral pH condition.

Catalytic Decomposition of SF6 by Hydrolysis over γ - Al2O3 Supported Metal Oxide Catalysts (금속산화물이 담지된 γ - Al2O3 촉매상에서 가수분해에 의한 SF6의 촉매분해)

  • Park, Hyeon-Gyu;Park, No-Kuk;Lee, Tae-Jin;Chang, Won-Chul;Kwon, Won-Tae
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.83-88
    • /
    • 2012
  • In order to improve the stability of ${\gamma}-Al_2O_3$ on hydrolysis of $SF_6$, the catalytic promoters were investigated in this study. The crystal phase of ${\gamma}-Al_2O_3$ is transformed to their ${\alpha}$-phase during hydrolysis of $SF_6$. Various metal oxides were applied as the promoter material that is Ga, Mg, and Zn and the promoter of 1, 5, and 10 wt% was impregnated over ${\gamma}-Al_2O_3$ by the impregnation method. Specially, it were confirmed in the catalytic activity tests and XRD analysis that ZnO/${\gamma}-Al_2O_3$ catalyst had the high activity for decomposition of $SF_6$ by catalytic hydrolysis and the crystal phase of ZnO promoted ${\gamma}-Al_2O_3$ was not transformed. From these results, it could be known that the stability of ${\gamma}-Al_2O_3$ is enhanced with the catalytic promotion of ZnO impregnated over the surface of catalyst.