• 제목/요약/키워드: Al Hot Extrusion

검색결과 94건 처리시간 0.024초

서스펜션 암의 포트홀 다이 압출공정 유한요소 해석 (Finite Element Analysis of Porthole Extrusion Process for Al Suspension Arm)

  • 조영준;이상곤;김병민;오개희;박상우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.247-250
    • /
    • 2006
  • The growing demand for more fuel-efficient vehicles to reduce energy consumption and air pollution is a challenge for the automotive industry. The characteristic properties of aluminum, high strengrth stiffness to weight ratio, good formability, good corrosion resistence, and recycling potential make it the ideal candidate to replace heavier materials in the car to respond to the weight resuction demand within the automotive industry. In this paper, A series of compression test was carried out to find the flow stress of A6082 at 300, 400 and $500^{\circ}C$, then we tried to estimate weldability, extrusion load and effective stress of die in the aluminum extrusion process through the 3D FE simulation at non-steady state for aluminum automotive parts.

  • PDF

Prediction of Welding Pressure in the Non Steady State Porthole Die Extrusion of Al7003 Tubes

  • Jo, Hyung-Ho;Lee, Jung-Min;Lee, Seon-Bong;Kim, Byung-Min
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권3호
    • /
    • pp.36-41
    • /
    • 2003
  • This paper describes a numerical analysis of a non-steady state porthole die extrusion, which is useful for manufacturing long tubes with a hollow section. Materials divided through several portholes are gathered within a chamber and are then welded under high pressure. This weldability classifies the quality of tube products and is affected by process variables and die shapes. However, porthole die extrusion has been executed based on the experience of experts, due to the complicated die assembly and the complexity of metal flow. In order to better assist the design of die and to obtain improvement of productivity, non-steady state 3D FE simulation of porthole die extrusion is required. Therefore, the objective of this study is to analyze the behavior of metal flow and to determine the welding pressure of hot extrusion products under various billet temperatures, bearing length, and tube thickness by FE analysis. The results of FE analysis are compared with those of experiments.

급냉응고 및 열간가공된 Al-Zr계 합금의 석출거동 (Precipitation Behaviors of Rapidly Solidified and Hot Worked Al-Zr Base Alloys)

  • 박원욱
    • 한국주조공학회지
    • /
    • 제15권2호
    • /
    • pp.194-200
    • /
    • 1995
  • Rapidly Solidified (RS) Al-Zr base splats with various alloy contents were prepared by atomization-splat quenching method to understand the continuous and discontinuous precipitation in the aged alloys. And the RS alloys were consolidated by hot extrusion and swaging to analyze the effect of plastic deformation on the precipitation behavior. Discontinuous precipitation dominated at relatively low temperature in the Al-Zr alloy, whereas both V additions to Al-Zr alloys and hot metal working appeared to suppress the discontinuous precipitation. As continuous precipitation is favored in the grain interiors, the driving force for discontinuous precipitation become to disappear with a further process.

  • PDF

가스 분무 공정에 의해 제조된 Al-Si 합금 분말 압출재의 열처리에 의한 미세조직 및 기계적 특성 변화 (Effect of Heat Treatment on the Microstructure and Mechanical Properties for Al-Si Alloyed Powder Material by Gas Atomizing and Hot Extrusion Process)

  • 남기영;진형호;김용진;윤석영;박용호
    • 한국분말재료학회지
    • /
    • 제13권6호
    • /
    • pp.421-426
    • /
    • 2006
  • The microstructural and mechanical properties of Al-Si alloyed powder, prepared by gas atomization fallowed by hot extrusion, were studied by optical and scanning electron microscopies, hardness and wear testing. The gas atomized Al-Si alloy powder exhibited uniformly dispersed Si particles with particle size ranging from 5 to $8{\mu}m$. The hot extruded Al-Si alloy shows the average Si particle size of less than $1{\mu}m$. After heat-treatment, the average particle size was increased from 2 to $5{\mu}m$. Also, mechanical properties of extruded Al-Si alloy powder were analyzed before and after heat-treatment. As expected from the microstructural analysis, the heat-treated samples resulted in a decrease in the hardness and wear resistance due to Si particle growth. The friction coefficient of heat-treated Al-Si alloyed powder showed higher value tough all sliding speed. This behavior would be due to abrasive wear mechanism. As sliding speed increases, friction coefficient and depth and width of wear track increase. No significant changes occurred in the wear track shape with increased sliding speed.

비정질 $AI_{85}Ni_{10}Y_{5}$ 합금 리본의 벌크화와 어닐링에 따른 기계적 특성 (Bulk Processing of an Amorphous $AI_{85}Ni_{10}Y_{5}$ Alloy Ribbon and Mechanical Properties by Annealing Treatment)

  • 고병철;김종현;유연철
    • 소성∙가공
    • /
    • 제8권6호
    • /
    • pp.626-633
    • /
    • 1999
  • $Al_{85}Ni_{10}Y_5$ (at. %) amorphous alloy ribbons have been produced by rapidly solidification process and consolidated by the conventional powder metallurgy method. The grains with ∼90 nm were obtained in the Al85Ni10Y5 alloy extrudates by hot-pressing followed by hot-extusion. To investigate the effect of heat treatment on microstructural change of the extrudates, heat treatment was carried out from 200℃ to 400℃ at the step of 50℃. In addition, mechanical properties of the extrudates were analysed from torsion test at the temperature range or 400∼500℃ under a strain rates of 0.2, 0.5, and 1.0/sec. The extrudates showed a flow stress of ∼190 MPa and low elongation of ∼150% at 400℃, contributing to the enhancement of ductility and hardness for extrudates. Also, grain boundary sliding was occurred in the $Al_{85}Ni_{10}Y_5$ alloy during hot deformation.

  • PDF

Copper-clad Aluminium 복합재료의 정수압 압출시 다이 각이 미치는 효과 (Effect of Die Angle in the Hydrostatic Extrusion of Copper-clad Aluminium Composites)

  • 한운용;박훈재;윤덕재;정하국;김승수;김응주;이경엽
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.414-417
    • /
    • 2003
  • A copper-clad aluminium composite bar is lighter and less expressive than a commercial copper alloy bar. Copper-clad aluminium composite bar can be fabricated by hot hydrostatic extrusion process. In this work, the effect of die angle on the compressive properties of copper-clad aluminium composites fabricated using hydrostatic extrusion process was investigated experimentally. The results showed that optimum half die angle was in the range of 40$^{\circ}$ to 50$^{\circ}$ for an extrusion ratio of 19. The results also showed that the half die angle had little influence on the compressive strength of copper-clad aluminium composites. A diffusion layer increased with increasing die angle.

  • PDF

과공정 Al-25Si-X 내마모 합금의 분무 성형 및 특성 평가 (Spray forming the wear resistant hypereutectic Al-25Si-X alloy and property evaluation)

  • 이재철;석현광;신돈수;이호인
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 압출 및 인발 심포지엄
    • /
    • pp.24-37
    • /
    • 1999
  • A comprehensive methodology to consolidate the hypereutectic Al-27Si-X alloy via spray forming was investigated in an attempt to judge the feasiblilty of this alloy in applying wear resistant components. Billets having desired shape and microstructures were fabricated using forming parameters obtained from numerical calculations. Prior to tube extrusion of the spray formed billets, effects of various extrusion conditions, such as extrusion ratio, die temperature, and die configuration, on microstructures of the billet were studied. Based on results obtained from the preliminary extrusion tests, the formed billets were then hot extruded into a tubular shape. Various material properties of the extruded billet were measured and compared with the other candidate materials for anti-wear applications.

  • PDF

Al-Ni-Y 비정질 합금의 열적특성 및 고온변형특성에 관한 연구 (Thermal Pro0perties and High Temperature Deformation Behaviors of Al-Ni-Y Amprphous Alloy)

  • 고병철;김종현;유연철
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.72-75
    • /
    • 1998
  • High temperature deformation behavior of Al85Ni10Y5 alloy extrudates fabricated with amorphous ribbons was investigated at temperature range form 300 to 550$^{\circ}C$ by torsion tests. Thermal properties of amorphous ribbons as a function of aging temperature was studied by Differential Scanning Calorimetry(DSC). The Al phase crystallite firstly formed in the amorphous ribbons and its crystallization temperature(Tx) was ∼210$^{\circ}C$. During the processings of consolidation and extrusion, nano-grained structure was formed in the Al85Ni10Y5 alloy extrudates. The as-extrudated Al85Ni10Y5 alloy and the Al85Ni10Y5 alloy annealed at 250$^{\circ}C$ for 1 hour showed the flow curve of DRV(dynamic recovery) during hot deformation at 400-550$^{\circ}C$. On the other hand, the Al85Ni10Y5 alloy annealed at 400$^{\circ}C$ for 1 hour showed the flow curve of DRX(dynamic recrystallization) during hot deformation at 450-500$^{\circ}C$.

  • PDF

기계적 합금화에 의한 $NiAl-Fe-AIN-Al_2O_3$ 합금분말의 제조, 열간 성형, 이차재결정화 및 기계적 성질 평가에 관한 연구 (A Study of Production, Hot Consolidation, Secondary Recrystallization and Mechnical Property Assesment of Mechanically Alloyed $NiAl-Fe-AiN-Al_2O_3$)

  • 이순철
    • 한국분말재료학회지
    • /
    • 제6권1호
    • /
    • pp.111-118
    • /
    • 1999
  • Ni(Fe)Al powders containing a homogeneous distribution of the in-situ formed AIN and $Al_2O_3$ dispersoids have been produced by mechanical alloying process in a controlled atmosphere using high energy attrition mill. The powders have been successfully consolidated by hot extrusion process. The phase information investigated by TEM and XRD analysis reveals that Fe can be soluble up to 20% to the NiAl phase ($\beta$) at room temperature after MA process. Subsequent thermomechanical treatment under specific condition has been tried to induce secondary recrystallization (SRx) to improve high temperature properties, however, the clear evidence of SRx was not obtained in this material. Mechanical properties in term of strength at room temperature as well as at high temperatures have been improved by the addition pf AIN, and the room temperature ductility has been shown to be improved after heat treatment, presumably due to the precipitation of second phase of $\alpha$ in this material.

  • PDF