• Title/Summary/Keyword: Al 5052

Search Result 124, Processing Time 0.028 seconds

Al5052/CFRP 복합소재의 표면특성이 접착성과 기계적특성에 미치는 영향 (Effect of Surface Roughness of Al5052/CFRP Composites on the Adhesion and Mechanical Properties)

  • 이민식;김현호;강충길
    • Composites Research
    • /
    • 제26권5호
    • /
    • pp.295-302
    • /
    • 2013
  • 본 연구에서는 차량용 Al5052/CFRP 복합재를 U-채널 몰드에서 컴프레션 몰딩 공정을 통해 제작하였다. Al5052는 샌드블라스팅을 통해 표면처리를 하였다. 표면처리를 하지 않은 판재와 표면거칠기(Ra)가 $1.85{\mu}m$ 및, $4.25{\mu}m$인 Al5052판재를 이용하여 실험을 수행하였다. 표면거칠기가 Al5052/CFRP 복합재의 접착성과 기계적 특성에 대한 영향을 전단시험과 굽힘실험을 통하여 평가하였다. 전단 시험에서는 표면거칠기가 $1.85{\mu}m$$4.25{\mu}m$ 시험편이 표면처리를 하지 않은 시험편보다 각각 3, 5배의 전단강도의 증가를 보였다. 굽힘시험에서는 표면처리를 하지 않았을 때 굽힘강도가 200 MPa에서 표면처리 후 400 MPa로 증가함을 알 수 있었다.

표면처리된 알루미늄 5052-H34 합금의 층격특성에 관한 실험적 연구 (An Experimental Study on the Impact Characteristics of Surface Hardened Al 5052-H34 Alloy)

  • 손세원;김희재;이두성;홍성희
    • 한국정밀공학회지
    • /
    • 제20권3호
    • /
    • pp.178-186
    • /
    • 2003
  • In order to investigate the fracture behaviors (penetration modes) and the resistance to penetration during ballistic impact of Al 5052-H34 alloy laminates, cold-rolled Al 5052-H34 alloy laminates, anodized Al 5052-H34 alloy laminates, and anodized Al 5052-H34 alloy after cold-rolling, a ballistic testing was conducted. In general, superior armor materials are brittle materials which have a high hardness. Ballistic resistance of these materials was measured by a protection ballistic limit (V$_{50}$), a statistical velocity with 50% probability fur incompletete penetration. Fracture begaviors and ballistic tolerance, described by penetration modes, ate observed from the results from the results of V$_{50}$ test and Projectile Through Plates (PTP) test at velocities greater than V$_{50}$, respectively. PTP tests were conducted with 0$_{\circ}$obliquity at room temperature using 5.56mm ball projectile. V$_{50}$ tests with 0$_{\circ}$obliquity at room temperature were concucted with projectiles that could achieve neat or complete penetration during PTP tests. Surface hardness, resistance to penetration, and penetration modes of Al 5052-H34 alloy laminates are compared to those of cold-rolled Al 5052-H34 alloy laminates and anodized Al 5052-H34 alloy laminates and anodized Al 5052-H34 cold-rolled alloy.

해수 유속 변화에 따른 Al5052-O와 Al6061-T6 알루미늄 합금의 침식부식 특성 (Erosion Corrosion Characteristics of Al5052-O and Al6061-T6 Aluminum Alloys with Flow Rate of Seawater)

  • 김영복;김성종
    • Corrosion Science and Technology
    • /
    • 제18권6호
    • /
    • pp.292-299
    • /
    • 2019
  • The hull material of a high-speed ship may cause erosion damage from fluid impact. When physical erosion and electrochemical corrosion combine, erosion corrosion damage occurs. The aluminum ship is vulnerable to erosion corrosion because it can be operated at high speed. Thus, in this study, Al5052-O and Al6061-T6 aluminum alloys for the marine environment were selected as experimental materials. The erosion corrosion resistance of Al5052-O and Al6061-T6 aluminum alloys in seawater was investigated by an erosion test and potentiodynamic polarization test at the various flow rate (0 m/s, 5 m/s, 10 m/s, 15 m/s, 20 m/s). Erosion corrosion characteristics were evaluated by surface analysis, 3D analysis, SEM analysis, and the Tafel extrapolation method. The results of surface damage analysis after the erosion test showed that Al6061-T6 presented better erosion resistance than Al5052-O. The results of the potentiodynamic polarization test at the various flow rate, corrosion current density by Tafel extrapolation presented lower values of Al6061-T6 than Al5052-O. Al5052-O showed more surface damage than Al6061-T6 at all flow rates. Consequently, Al6061-T6 presented better erosion corrosion resistance than Al5052-O. The results of this study are valuable data for selecting hull material for an aluminum alloy vessel.

고속충격을 받는 표면처리된 알루미늄 합금의 거동에 관한 연구 (A Study on the fracture behavior of surface hardening treated aluminum alloy under the high velocity impact)

  • 손세원;김희재;황도연;홍성희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.784-789
    • /
    • 2001
  • In order to investigate the fracture behaviors(penetration modes) and the resistance to penetration during ballistic impact of cold-rolled Al 5052 H34 alloy laminates, anodized Al 5052 H34 alloy laminates, and Al 5052 H34 alloy after cold-rolling, ballistic testing was conducted. In general, superior armor material is brittle materials which have a high hardness. Ballistic resistance of these materials was measured by protection ballistic limit(V50), a statical velocity with 50% probability for incomplete penetration. Fracture behaviors and ballistic tolerance, described by penetration modes, are observed respectfully, resulting from V50 test and Projectile Through Plate(PTP) test at velocities greater than V50. PTP tests were conducted with 0$^{\circ}$obliquity at room temperature using 5.56mm ball projectile. V50 tests with 0$^{\circ}$obliquity at room temperature were also conducted with projectiles that were able to achieve near or complete penetration during PTP tests. Surface Hardness, resistance to penetration, and penetration modes of Al 5052 H34 alloy laminates compared to those of cold-rolled Al 5052 H34 alloy laminates and anodized Al 5052 H34 alloy laminates anodized Al 5052 H34 alloy after cold-rolling.

  • PDF

경질양극산화를 실시한 Al5052합금의 내공식성에 미치는 ECAP의 영향 (Effect of Equal Channel Angular Pressing on the Pitting Corrosion Resistance of Hard Anodized Al5052 Alloy)

  • 손인준
    • 한국표면공학회지
    • /
    • 제48권4호
    • /
    • pp.142-148
    • /
    • 2015
  • The effect of equal channel angular pressing (ECAP) on the pitting corrosion resistance of hard anodized Al5052 alloy was investigated. The degree of internal stress generated in anodic oxide films during hard anodization was also evaluated with a strain gauge method. The pitting corrosion resistance of hard anodized Al5052 alloy was greatly decreased by ECAP. Cracks occurred in the anodic oxide film during hard anodization and these cracks were larger and deeper in the alloy with ECAP than without. The pitting corrosion was accelerated by cracks. The internal stress present in the anodic oxide films was compressive and the stress was higher in the alloys with ECAP than without, resulting in an increased likelihood of cracks. The pitting corrosion resistance of hard anodized Al5052 alloy was improved by annealing at the range of 473-573K after ECAP processed at room temperature for four passes. The compressive internal stress gradually decreased with increasing annealing temperature. It is assumed that the improvement in the pitting corrosion resistance of hard anodized Al5052 alloy by annealing may be attributed to a decrease in the likelihood of cracks due to the decreased internal stresses in anodic oxide films.

누적압연접합에 의한 5052 Al 합금의 결정립 미세화와 기계적 특성 연구 (An Investigation of Microstructural Evolution and Sliding Wear Behavior of Ultra-Fine Grained 5052 Aluminum Alloy Fabricated by a Accumulative Roll-Bonding Process)

  • 하종수;강석하;김용석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.84-87
    • /
    • 2003
  • Microstructural evolution and dry sliding wear behavior of ultra-fine grained 5052 Al alloy obtained by an accumulative roll-bonding process have been investigated. After 7 ARB cycles, ultra-fine grains with large misorientations between neighboring grains were obtained. The grain size was about 0.2$\mu\textrm{m}$. The hardness, tensile and yield strengths of the ultra-fine grained alloy increased as the amount of accumulated strain increased with the ARB cycles. Sliding wear teats of the ultra-fine grained 5052 Al alloy were conducted at room temperature. Wear rate of the ultra-fine grained alloy increased in spite of the increase of hardness. Surfaces of the worn specimens were examined with SEM to investigate wear mechanism of the ultra-fine grained alloy.

  • PDF

누적압연접합에 의한 5052 Al 합금의 결정립 미세화와 기계적 특성 연구 (An Investigation of Microstructural Evolution and Sliding Wear Behavior of Ultra-Fine Grained 5052 Aluminum Alloy Fabricated by an Accumulative Roll-Bonding Process)

  • 하종수;강석하;김용석
    • 소성∙가공
    • /
    • 제12권4호
    • /
    • pp.376-381
    • /
    • 2003
  • Microstructural evolution and dry sliding wear behavior of ultra-fine grained 5052 Al alloy obtained by an accumulative roll-bonding process have been investigated. After 7 ARB cycles, ultra-fine grains with a large misorientation between neighboring grains were obtained. The grain size was about 0.2 $\mu$m. The hardness, tensile and yield strengths of the ultra-fine grained alloy increased as the amount of accumulated strain increased with the ARB cycles. Sliding wear tests of the ultra-fine grained 5052 Al alloy were conducted at room temperature. Wear rate of the ultra-fine grained alloy increased in spite of the increase of hardness. Surface of the worn specimens were examined with SEM to investigate wear mechanism of the ultra-fine grained alloy.

반복-굽힘 모멘트의 진폭에 따른 A15052/AFRP 적층재의 층간분리 영역과 피로균열진전 거동 (The Delamination and Fatigue Crack Propagation Behavior in A15052/AFRP Laminates Under Cyclic Bending Moment)

  • 송삼홍;김철웅
    • 대한기계학회논문집A
    • /
    • 제25권8호
    • /
    • pp.1277-1286
    • /
    • 2001
  • Aluminum 5052/Aramid Fiber Reinforced Plastic(Al5052/AFRP) laminates are applied to the fuselage-wing intersection. The Al5052/AFRP laminates suffer from the cyclic bending moment of variable amplitude during the service. Therefore, the influence of cyclic bending moment on the delamination and the fatigue crack propagation behavior in Al5052/AFRP laminate was investigated in this study. Al5052/AFRP laminate composite consists of three thin sheets of Al5052 and two layers of unidirectional aramid fibers. The cyclic bending moment fatigue tests were performed with five different levels of bending moment. The shape and size of the delamination zone formed along the fatigue crack between Al5052 sheet and aramid fiber-adhesive layer were measured by an ultrasonic C-scan. The relationships between da/dN and ΔK, between the cyclic bending moment and the delamination zone size, and between the fiber bridging mechanism and the delamination zone were studied. Fiber failures were not observed in the delamination zone in this study. It represents that the fiber bridging modification factor should turn out to increase and that the fatigue crack growth rate should decrease. The shape of delamination zone turns out to be semi-elliptic with the contour decreased non-linearly toward the crack tip.

Al 1050, 5020 판재의 성형성에 관한 실험적 고찰 (An Experimental Study On The Formability of Aluminum 1050 and 5052 Sheet Metal)

  • 강용기;박진욱;문영훈
    • 소성∙가공
    • /
    • 제9권1호
    • /
    • pp.27-34
    • /
    • 2000
  • Sheet metal formabilities for aluminum 1050 and 5052 were experimentally investigated in this study. Deep drawability, bendability and stretch formability were measured at each process condition and correlated with tensile properties of sheet metal. To compare the formabilities of aluminum 1050 and 5052 sheets with those of steel sheets, deep drawing quality(DDQ) steel sheets are also tested at the same test conditions. Through the experimental studies, influential process variables for each forming process were obtained and correlated with the tensile properties. The comparisons of sheet metal formabilities with those of steed sheets showed that aluminum 1050 and 5052 is inherently deficient in formability than steel sheets but Al 5052 that has highter n and r value than al 1050 showed better formabilities.

  • PDF

실험계획법에 의한 Al5052 알루미늄 합금의 마찰교반용접특성 (Friction Stir Welding Characteristics of Al5052 Aluminium Alloy by Design of Experiment)

  • 강대민;장진숙
    • 동력기계공학회지
    • /
    • 제19권4호
    • /
    • pp.11-16
    • /
    • 2015
  • Welding is very popular method for joining two or more metals. In this paper, the three-way factorial design was adopted for obtaining the optimum friction stir welding conditions of Al 5052 alloy. Tools of shoulder diameter of 9, 12, 15 mm and pin length of 1.5 mm were used. Also the material's dimension for welding was $100{\times}100{\times}2mm$, and the tensile specimens were worked by water-jet technique. Welding variables were shoulder diameter, rotating speed of tool and welding speed. As far as this work is concerned, optimum condition for friction stir joint of Al 5052 alloy was predicted as the shoulder diameter of 15 mm, welding speed of 500mm/min and rotating speed of 1000 rpm. In addition, the presumed range of tensile strength under the optimal conditions is estimated to be $208.3{\pm}5.7$ MPa with 99% reliability.