• Title/Summary/Keyword: Al 3004

Search Result 5, Processing Time 0.017 seconds

Optimization of Process Parameters of Incremental Sheet Forming of Al3004 Sheet Using Genetic Algorithm-BP Neural Network (유전 알고리즘-BP신경망을 이용한 Al3004 판재 점진성형 공정변수에 대한 최적화 연구)

  • Yang, Sen;Kim, Young-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.560-567
    • /
    • 2020
  • Incremental Sheet Forming (ISF) is a unique sheet-forming technique. The process is a die-less sheet metal manufacturing process for rapid prototyping and small batch production. In the forming process, the critical parameters affecting the formability of sheet materials are the tool diameter, step depth, feed rate, spindle speed, etc. This study examined the effects of these parameters on the formability in the forming of the varying wall angle conical frustum model for a pure Al3004 sheet with 1mm in thickness. Using Minitab software based on Back Propagation Neural Network (BPNN) and Genetic Algorithm (GA), a second order mathematical prediction model was established to predict and optimize the wall angle. The results showed that the maximum forming angle was 87.071° and the best combination of these parameters to give the best performance of the experiment is as follows: tool diameter of 6mm, spindle speed of 180rpm, step depth of 0.4mm, and feed rate of 772mm/min.

Effect of Initial Texture on the Evolution of Warm Rolling Texture and Microstructure in Aluminum Alloy Sheet (알루미늄 판재의 온간압연 집합조직과 미세조직에 미치는 초기 집합조직의 영향)

  • Kim H. D.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.138-141
    • /
    • 2001
  • The evolution of lectures and microstructure during the warm-rolling and subsequent annealing in aluminum 3004 alloy sheets was investigated by employing X-ray texture measurements and microstructure observations. Whereas the typical $\beta$-fiber orientations with the strong Bs-orientation $\{112\}<110>$ formed in the normally cold-rolled specimen, the warm-rolling at $250^{\circ}C$ led to the development of a strong through thickness texture gradient which was characterized by shear texture at the surface layer and rolling textures at the center layer After warm rolling, ultra-fine grains formed in the thickness layer with shear texture components. Upon recrystallization annealing, the $\{001\}<100>$ Cube-texture developed at the expense of normal rolling texture components the rise to the formation of corase recrystallized grains. However, in the layer with shear texture components the continuous recrystallization took place and the fine grain size persisted even after recrystallization annealing.

  • PDF

Effect of Brake Timing on Joint Interface Efficiency of Aluminum Composites During Friction Welding (알루미늄 복합재료의 마찰용접시 브레이크 타이밍이 접합계면 효율에 미치는 영향)

  • Kim Hyun-Soo;Park In-Duck;Shinoda Takeshi;Kim Tae-Gyu
    • Journal of Powder Materials
    • /
    • v.13 no.1 s.54
    • /
    • pp.62-67
    • /
    • 2006
  • Friction welding of $Al_2O_3$ particulate reinforced aluminum composites was performed and the following conclusions were drawn from the study of interfacial bonding characteristics and the relationship between experimental parameters of friction welding and interfacial bond strength. Highest bonded joint efficiency (HBJE) approaching $100\%$ was obtained from the post-brake timing, indicating that the bonding strength of the joint is close to that of the base material. For the pre-brake timing, HBJE was $65\%$. Most region of the bonded interface obtained from post-brake timing exhibited similar microstructure with the matrix or with very thin, fine-grained $Al_2O_3$ layer. This was attributed to the fact that the fine-grained $Al_2O_3$ layer forming at the bonding interface was drawn out circumferentially in this process. Joint efficiency of post-brake timing was always higher than that of pre-brake timing regardless of rotation speed employed. In order to guarantee the performance of friction welded joint similar to the efficiency of matrix, it is necessary to push out the fine-grained $Al_2O_3$ layer forming at the bonding interface circumferentially. As a result, microstructure of the bonded joint similar to that of the matrix with very thin, fine-grained $Al_2O_3$ layer can be obtained.

Cloning and Expression of an $\alpha$-Amylase Gene from Bacillus circulans in B. subtilis and B. megaterium (Bacillus circulans $\alpha$-amylase 유전자의 Basillus subtilis와 Bacillus megaterium에서의 클로닝 및 발현)

  • 이동석;김지연;김한복
    • Korean Journal of Microbiology
    • /
    • v.36 no.3
    • /
    • pp.203-208
    • /
    • 2000
  • A Baczllus circdans KCTC3004 $\alpha$-amylase gene contained in a recombinant plasmid pAL850 was transferred into a new shuttle vector plasmid pALSIlI by ligating linearlzed DNAs of pUC19 and pUB110. B. subtilis RM125 and B. megatenurn ATCC14945 transfonned with pALS111 produced the $\alpha$-amylase substantially Most of the enzyme was produced during the exponential growth period. The maxiinurn activities of the $\alpha$-amylase produced by the Bucillus transformants were compared with that of the B. circulans gene donor strain. The B. subtilis RM125(pALS111) enzyme showed the actlvicy 95 times higher than that of the gene donor cells, followed by the B, nzegaterium ATCC14945(pALSlll) enzyme with activity 34 limes higher than that of the gene donor cells. While E coli secreted about 10% of the produced enzyme, B. subtilis excreted the enzyme inlo the medium wholly and B. megaterirun about 98% ofthe total product. The plasmid pALSI11 was quite stable inB. nzegaterium (92%), inoderately stable in B. subtilis (76%), but was unstable in E. coli (38%). The SDS-PAGE and zymogram of this enzyme produced in E. coli(pALS111), B. subtilis( pALS111) or B. megateril~m (pALS111) indicated a molecular weight of 55,000. The enzymes overproduced in three different host cells hydrolyzed starch to produce mainly maltoaiose and mallooligosaccharides.

  • PDF

Prediction for Thickness and Fracture of Stainless Steel-Aluminum-Magnesium Multilayered Sheet during Warm Deep Drawing (온간 딮 드로잉에서 이종금속판재(STS430-Al3004-AZ31)의 파단 및 두께 예측을 위한 연구)

  • Lee, Y.S.;Lee, K.S.;Kim, D.
    • Transactions of Materials Processing
    • /
    • v.21 no.1
    • /
    • pp.49-57
    • /
    • 2012
  • It is difficult to estimate the properties of multilayered sheet because they are composed of one or more different materials. Plastic deformation behavior of the multilayered sheet is quite different as compared to each material individually. The deformation behavior of multilayered sheet should be investigated in order to prevent forming defects and to predict the properties of the formed part. In this study, the mechanical properties and formability of stainless steel-aluminum-magnesium multilayered sheet were investigated. The multilayered sheet needs to be deformed at an elevated temperature because of its poor formability at room temperature. Uniaxial tensile tests were performed at various temperatures and strain rates. Fracture patterns changed mainly at a temperature of $200^{\circ}C$. Uniform and total elongation of multilayered sheet increased to values greater than those of each material when deformed at $250^{\circ}C$. The limiting drawing ratio (LDR) was obtained using a circular cup deep drawing test to measure the formability of the multilayered sheet. A maximum value for the LDR of about 2 was achieved at $250^{\circ}C$, which is the appropriate forming temperature for the Mg alloy. Fracture patterns on a circular cup and thickness of formed part were predicted by a rigid-viscoplastic FEM analysis. Two kinds of modeling techniques were used to simulate deep drawing process of multilayered sheet. A single-layer FE-model, which combines the three different layers into a macroscopic single layer, predicted well the thickness distribution of the drawn cup. In contrast, the location and the time of fracture were estimated better with a multi-layer FE model, which used different material properties for each of the three layers.