• Title/Summary/Keyword: Al 2024

Search Result 385, Processing Time 0.028 seconds

Concentrations Distribution and Risk Evaluation of Heavy Metal in PM-10 in Gwangju (광주지역 미세먼지(PM-10) 중 중금속 농도분포 및 위해성 평가)

  • Hye-Yun, Na;Youn-Goog Lee;Min-Cheol Cho;Hwan-Gi Kim;Won-Hyeong Park;Gwang-Yeob Seo;Se-Heang Lee
    • Journal of Environmental Science International
    • /
    • v.33 no.5
    • /
    • pp.283-296
    • /
    • 2024
  • This study examined the distribution of airborne metals concentrations and conducted a risk assessment in PM-10 in Gwangju from 2014 to 2022. There were a total of six points, and the concentration of heavy metals at each point was highest in the order of Pyeong-dong(1.5472 ㎍/m3 ) > Nongseong-dong(1.2093 ㎍/m3 ) > Geonguk-dong(1.0100 ㎍/m3 ) > Duam-dong(0.9684 ㎍/m3 ) > Seo-dong(0.9515 ㎍/m3 ) > Nodae-dong(0.8321 ㎍/m3 ). In recent years, the concentration of heavy metals in the atmosphere has generally risen, accompanied by an increase in heavy metals in the soil. The average seasonal concentrations were in the following order: spring(1.4448 ㎍/m3 ) > winter(1.2939 ㎍/m3 ) > fall(0.8303 ㎍/m3 ) > summer (0.5928 ㎍/m3 ). The atmospheric heavy metals most correlated with PM-10 were Ca(0.69), Fe(0.62), Al(0.62) and Mg(0.60). Within the acceptable risk level (1.0E-06) set in this study, heavy metals in the atmosphere were found to have the most excess cancer risk, and the integrated non-cancer risk was as low as 1 or less.

Synthesis and Analysis of the Impact of Partial Mercury Replacement with Lead on the Structural and Electrical Properties of the Hg1-xPbxBa2Ca2Cu3O8+δ Superconductor

  • Kareem Ali Jasim;Chaiar Abdeen Zaynel Saleh;Alyaa Hamid Ali Jassim
    • Korean Journal of Materials Research
    • /
    • v.34 no.1
    • /
    • pp.21-26
    • /
    • 2024
  • In this investigation, samples of the chemical (Hg1-xPbxBa2Ca1.8Mg0.2Cu3O8+δ) were prepared utilizing a solid-state reaction technique with a range of lead concentrations (x = 0.0, 0.05, 0.10, and 0.20). Specimens were pressed at 8 tons per square centimeter and then prepared at 1,138 K in the furnace. The crystalline structure and surface topography of all samples were examined using X-ray diffraction (XRD) and atomic force microscopy (AFM). X-ray diffraction results showed that all of the prepared samples had a tetragonal crystal structure. Also, the results showed that when lead was partially replaced with mercury, an increase in the lead value impacted the phase ratio, and lattice parameter values. The AFM results likewise showed excellent crystalline consistency and remarkable homogeneity during processing. The electrical resistivity was calculated as a function of temperature, and the results showed that all samples had a contagious behavior, as the resistivity decreased with decreasing temperature. The critical temperature was calculated and found to change, from 102, 96, 107, and 119 K, when increasing the lead values in the samples from 0.0 to 0.05, 0.10, and 0.20, respectively.

Development and Implementation of a Low-noise and Safe Dismantling Method for Full-Span Aluminum Slab Formwork Supported by Filler Supports (필러겸용 스포터로 지지되는 전구간 알루미늄 슬래브 거푸집의 저소음 안전낙하 공법개발 및 적용연구)

  • Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.261-271
    • /
    • 2024
  • The widespread adoption of aluminum slab formwork in modern construction, evident in both domestic and international projects, offers numerous advantages. However, a critical challenge persists regarding the dismantling process for these slabs. The current industry standard involves dropping the slabs to the ground floor upon removal. This practice raises several concerns, notably the generation of significant noise pollution that disrupts nearby communities. More importantly, the risk of worker injuries due to falls from height during the dismantling process is a serious safety hazard. Additionally, the impact from dropping the slabs can damage the aluminum itself, leading to increased replacement costs. These drawbacks necessitate the exploration of alternative dismantling techniques that prioritize worker safety, material sustainability, and overall process efficiency. Accordingly, in this study, when the entire first-generation slab formwork of an apartment house is simultaneously lowered to a reachable position for workers, it is then disassembled and lifted for transport to the next floor. This approach has the potential to demonstrate improvements in safety, quality, economy, and process efficiency.

Research Trends in Domestic and International Al chips (국내외 인공지능 반도체에 대한 연구 동향 )

  • Hyun Ji Kim;Se Young Yoon;Hwa Jeong Seo
    • Smart Media Journal
    • /
    • v.13 no.3
    • /
    • pp.36-44
    • /
    • 2024
  • Recently, large-scale artificial intelligence (AI) such as ChatGPT have been developed, and as AI is used across various industrial fields, attention is focused on AI chips (semiconductors). AI chips refer to chips designed for calculations for AI algorithms, and many companies at domestic and abroad, such as NVIDIA, Tesla, and ETRI, are developing AI chips. In this paper, we survey research trends on nine types of AI chips. Currently, many attempts have been made to improve the computational performance of most AI chips, and semiconductors for specific purposes are also being designed. In order to compare various AI semiconductors, each chip is analyzed in terms of operation unit, speed, power, and energy efficiency. We introduce currently existing optimization methodologies for AI computation. Based on this, future research directions for AI semiconductors are presented in this paper.

Stress distribution in implant abutment components made of titanium alloy, zirconia, and polyetheretherketone: a comparative study using finite element analysis (티타늄 합금, 지르코니아, 폴리에테르에테르케톤 지대주 재질에 따른 임플란트 구성요소의 응력분포: 유한 요소 분석을 통한 비교 연구)

  • Sung-Min Kim
    • Journal of Technologic Dentistry
    • /
    • v.46 no.2
    • /
    • pp.21-27
    • /
    • 2024
  • Purpose: This study aimed to analyze the stress distribution and deformation in implant abutments made from titanium (Ti-6Al-4V), zirconia, and polyetheretherketone (PEEK), including their screws and fixtures, under various loading conditions using finite element analysis (FEA). Methods: Three-dimensional models of the mandible with implant abutments were created using Siemens NX software (NX10.0.0.24, Siemens). FEA was conducted using Abaqus to simulate occlusal loads and assess stress distribution and deformation. Material properties such as Young's modulus and Poisson's ratio were assigned to each component based on literature and experimental data. Results: The FEA results revealed distinct stress distribution patterns among the materials. Titanium alloy abutments exhibited the highest stress resistance and the most uniform stress distribution, making them highly suitable for long-term stability. Zirconia abutments showed strong mechanical properties with higher stress concentration, indicating potential vulnerability to fracture despite their aesthetic advantages. PEEK abutments demonstrated the least stress resistance and higher deformation compared to other abutment materials, but offered superior shock absorption, though they posed a higher risk of mechanical failure under high load conditions. Conclusion: The study emphasizes the importance of selecting appropriate materials for dental implants. Titanium offers durability and uniform stress distribution, making it highly suitable for long-term stability. Zirconia provides aesthetic benefits but has a higher risk of fracture compared to titanium. PEEK excels in shock absorption but has a higher risk of mechanical failure compared to both titanium and zirconia. These insights can guide improved implant designs and material choices for various clinical needs.

Analysis and study of Deep Reinforcement Learning based Resource Allocation for Renewable Powered 5G Ultra-Dense Networks

  • Hamza Ali Alshawabkeh
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.226-234
    • /
    • 2024
  • The frequent handover problem and playing ping-pong effects in 5G (5th Generation) ultra-dense networking cannot be effectively resolved by the conventional handover decision methods, which rely on the handover thresholds and measurement reports. For instance, millimetre-wave LANs, broadband remote association techniques, and 5G/6G organizations are instances of group of people yet to come frameworks that request greater security, lower idleness, and dependable principles and correspondence limit. One of the critical parts of 5G and 6G innovation is believed to be successful blockage the board. With further developed help quality, it empowers administrator to run many systems administration recreations on a solitary association. To guarantee load adjusting, forestall network cut disappointment, and give substitute cuts in case of blockage or cut frustration, a modern pursuing choices framework to deal with showing up network information is require. Our goal is to balance the strain on BSs while optimizing the value of the information that is transferred from satellites to BSs. Nevertheless, due to their irregular flight characteristic, some satellites frequently cannot establish a connection with Base Stations (BSs), which further complicates the joint satellite-BS connection and channel allocation. SF redistribution techniques based on Deep Reinforcement Learning (DRL) have been devised, taking into account the randomness of the data received by the terminal. In order to predict the best capacity improvements in the wireless instruments of 5G and 6G IoT networks, a hybrid algorithm for deep learning is being used in this study. To control the level of congestion within a 5G/6G network, the suggested approach is put into effect to a training set. With 0.933 accuracy and 0.067 miss rate, the suggested method produced encouraging results.

Calibration and Verification of Detailed Prototypical Apartment Building Energy Models for Estimation of Green Remodeling Feasibility (그린리모델링 효과평가를 위한 표준공동주택 정밀에너지해석모델 보정과 검증)

  • Donghyun Seo
    • Land and Housing Review
    • /
    • v.15 no.2
    • /
    • pp.9-17
    • /
    • 2024
  • The prototypical building energy model is very useful in building energy policies, research, and technology development. A prototypical apartment model for detailed energy analysis was proposed by Seo et al. in 2014, but sufficient verification was not possible due to the lack of reliable measurement data in predicting the model's energy consumption. However, verification is now possible thanks to a recent study that analyzed the Household Energy Panel Survey (HEPS) data that is released annually by the Korea Energy Economics Institute (KEEI) and published apartment complex benchmark data. The data was used to calibrate the prototypical apartment energy model located in the central region and constructed between 1990 and 1999. The calibrated model was used to verify the other apartment building groups with respect to region and year of completion. Meteorological data for five representative cities each in the central and southern regions were used for the simulation. A majority of the 18 groups produced results that satisfied the MBE and cv(RMSE) criteria.

Computed Tomography Assessment of Severity of Acute Pancreatitis in Bangladeshi Children

  • Kaniz Fathema;Bazlul Karim;Salahuddin Al-Azad;Md. Rukunuzzaman;Mizu Ahmed;Tasfia Jannat Rifah;Dipanwita Saha;Md. Benzamin
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.27 no.3
    • /
    • pp.176-185
    • /
    • 2024
  • Purpose: Acute pancreatitis (AP) is common among children in Bangladesh. Its management depends mainly on risk stratification. This study aimed to assess the severity of pediatric AP using computed tomography (CT). Methods: This cross-sectional, descriptive study was conducted in pediatric patients with AP at the Department of Pediatric Gastroenterology and Nutrition, BSMMU, Dhaka, Bangladesh. Results: Altogether, 25 patients with AP were included, of whom 18 (mean age, 10.27±4.0 years) were diagnosed with mild AP, and 7 (mean age, 10.54±4.0 years) with severe AP. Abdominal pain was present in all the patients, and vomiting was present in 88% of the patients. Etiology was not determined. No significant differences in serum lipase, serum amylase, BUN, and CRP levels were observed between the mild and severe AP groups. Total and platelet counts as well as hemoglobin, hematocrit, serum creatinine, random blood sugar, and serum alanine aminotransferase levels (p>0.05) were significantly higher in the mild AP group than in the severe AP group (p=0.001). The sensitivity, specificity, positive predictive value, and negative predictive value of CT severity index (CTSI) were 71.4%, 72.2%, 50%, and 86.7%, respectively. In addition, significant differences in pancreatic appearance and necrosis were observed between the two groups on CT. Conclusion: CT can be used to assess the severity of AP. In the present study, the CTSI effectively assessed the severity of AP in pediatric patients.

The behavior of concrete filled steel tubular columns infilled with high-strength geopolymer recycled aggregate concrete

  • Rajai Z. Al-Rousan;Haneen M. Sawalha
    • Steel and Composite Structures
    • /
    • v.51 no.6
    • /
    • pp.661-678
    • /
    • 2024
  • The utilization of geopolymer recycled aggregate concrete (GRAC) as the infilled core of the concrete-filled steel tubular (CFST) columns provides superior economic and environmental benefits. However, limited research exists within the field of geopolymer recycled aggregate concrete considered a green and sustainable material, in addition to the limitation of the design guidelines to predict the behavior of such an innovative new material combination. Moreover, the behavior of high-strength concrete is different from the normal-strength one, especially when there is another material of high-strength properties, such as the steel tube. This paper aims to investigate the behavior of the axially loaded square high-strength GRACFST columns through the nonlinear finite element analysis (NLFEA). A total of thirty-two specimens were simulated using ABAQUS/Standard software with three main variables: recycled aggregate replacement ratio (0, 30, and 50) %, width-to-thickness ratios (52.0, 32.0, 23.4, and 18.7), and length-to-width ratio (3, 5, 9, and 12). During the analysis, the response in terms of the axial load versus the longitudinal strain was recorded and plotted. In addition, various mechanical properties were calculated and analyzed. In view of the results, it has been demonstrated that the mechanical properties of high-strength GRACFST columns such as ultimate load-bearing capacity, compressive stiffness, energy absorption capacity, and ductility increase with the increase of the steel tube thickness owing to the improvement of the confinement effect of the steel tube. In contrast, the incorporation of the recycled aggregate adversely affected the mentioned properties except the ductility, while the increase of the recycled aggregate replacement ratio improved the column's ductility. Moreover, it has been found that the increase in the length-to-width ratio significantly reduced both the failure strain and the energy absorption capacity. Finally, the obtained NLFEA results of the ultimate load-bearing capacity were compared with the corresponding predicted capacities by numerous codes. It has been concluded that AISC, ACI, and EC give conservative predictions for the ultimate load-bearing capacity since the confinement effect was not considered by these codes.

Sintering Behavior of Borate-Based Glass Ceramic Solid Electrolytes for All-Solid Batteries (전고체전지용 붕산염 유리 세라믹 고체 전해질의 조성비에 따른 소결 특성 연구)

  • Jeong Min Lee;Dong Seok Cheong;Sung Hyun Kang;Tirtha Raj Acharya;Eun Ha Choi;Weon Ho Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.445-450
    • /
    • 2024
  • The expansion of lithium-ion battery usage beyond portable electronic devices to electric vehicles and energy storage systems is driven by their high energy density and favorable cycle characteristics. Enhancing the stability and performance of these batteries involves exploring solid electrolytes as alternatives to liquid ones. While sulfide-based solid electrolytes have received significant attention for commercialization, research on amorphous-phase glass solid electrolytes in oxide-based systems remains limited. Here, we investigate the glass transition temperatures and sintering behaviors by changing the molecular ratio of Li2O/B2O3 in borate glass comprising Li2O-B2O3-Al2O3 system. The glass transition temperature is decreasing as increasing the amount of Li2O. When we sintered at 450℃, just above the glass transition temperature, the samples did not consolidate well, while the proper sintered samples could be obtained under the higher temperature. We successfully obtained the borate glass ceramics phases by melt-quenching method, and the sintering characteristics are investigated. Future studies could explore optimizing ion conductivity through refining processing conditions, adjusting the glass former-to-modifier ratio, and incorporating additional Li salt to enhance the ionic conductivity.