• 제목/요약/키워드: Akt-pathway

검색결과 471건 처리시간 0.031초

Beneficial effects of andrographolide in a rat model of autoimmune myocarditis and its effects on PI3K/Akt pathway

  • Zhang, Qi;Hu, Li-qun;Li, Hong-qi;Wu, Jun;Bian, Na-na;Yan, Guang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권2호
    • /
    • pp.103-111
    • /
    • 2019
  • The study is to investigate effects of andrographolide on experimental autoimmune myocarditis (EAM). Lewis rats were immunized on day 0 with porcine cardiac myosin to establish EAM. The EAM rats were treated with either andrographolide (25, 50, 100 mg/kg/day) or vehicle for 21 days. An antigen-specific splenocytes proliferation assay was performed by using the cells from control rats immunized with cardiac myosin. Survival rates, myocardial pathology and myocardial functional parameters (left ventricle end-diastolic pressure, ${\pm}dP/dt$ and left ventricular internal dimension) of EAM rats received andrographolide were significantly improved. Andrographolide treatment caused an decrease in the infiltration of $CD3^+$ and $CD14^+$ positive cells in myocardial tissue. Moreover, andrographolide treatment caused a reduction in the plasma levels of tumor necrosis factor-alpha, interleukin-17 (IL-17) and myosin-antibody, and an increase in the level of IL-10 in EAM rats. Oral administration of andrographolide resulted in the decreased expression of p-PI3K, p-Akt without any change of PI3K and Akt. Further results indicate andrographolide significantly inhibited myosin-induced proliferation in splenocytes, and this effect was inhibited by co-treatment of SC79 (Akt activator). Our data indicate andrographolide inhibits development of EAM, and this beneficial effect may be due to powerful anti-inflammatory activity and inhibitory effect on PI3K/Akt pathway.

Compound K, a ginsenoside metabolite, plays an antiinflammatory role in macrophages by targeting the AKT1-mediated signaling pathway

  • Lee, Jeong-Oog;Choi, Eunju;Shin, Kon Kuk;Hong, Yo Han;Kim, Han Gyung;Jeong, Deok;Hossain, Mohammad Amjad;Kim, Hyun Soo;Yi, Young-Su;Kim, Donghyun;Kim, Eunji;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • 제43권1호
    • /
    • pp.154-160
    • /
    • 2019
  • Background: Compound K (CK) is an active metabolite of ginseng saponin, ginsenoside Rb1, that has been shown to have ameliorative properties in various diseases. However, its role in inflammation and the underlying mechanisms are poorly understood. In this report, the antiinflammatory role of CK was investigated in macrophage-like cells. Methods: The CK-mediated antiinflammatory mechanism was explored in RAW264.7 and HEK293 cells that were activated by lipopolysaccharide (LPS) or exhibited overexpression of known activation proteins. The mRNA levels of inflammatory genes and the activation levels of target proteins were identified by quantitative and semiquantitative reverse transcription polymerase chain reaction and Western blot analysis. Results: CK significantly inhibited the mRNA expression of inducible nitric oxide synthase and tumor necrosis factor-${\alpha}$ and morphological changes in LPS-activated RAW264.7 cells under noncytotoxic concentrations. CK downregulated the phosphorylation of AKT1, but not AKT2, in LPS-activated RAW264.7 cells. Similarly, CK reduced the AKT1 overexpression-induced expression of aldehyde oxidase 1, interleukin-$1{\beta}$, interferon-${\beta}$, and tumor necrosis factor-${\alpha}$ in a dose-dependent manner. Conclusion: Our results suggest that CK plays an antiinflammatory role during macrophage-mediated inflammatory actions by specifically targeting the AKT1-mediated signaling pathway.

생간건비탕(生肝健脾湯)이 HepG2 cell의 증식, 세포사멸 및 활성조절 신호전달계에 미치는 영향 (The Effects of Saengkankunbi-tang on Proliferation, Apoptosis and Cell Signaling Pathways of HepG2 Cells)

  • 김재용;김영철;이장훈;우홍정
    • 대한한방내과학회지
    • /
    • 제27권1호
    • /
    • pp.149-165
    • /
    • 2006
  • Objectives: This study was done to evaluate the effects of Saengkankunbi-tang on cell-viability, proliferation, cell-cycle, apoptosis and DNA replication on HepG2 cell and to find out by which molecular-biological mechanism by which Saengkankunbi-tang operates. Methods : The MTT assay, cell counting assay, [3H]-thymidine incorporation assay, flow cytometric analysis, tryphan blue exclusion assay, western blot analysis, quantative RT-PCR were taken. Results : Saengkankunbi-tang had no effect on proliferation, cell-cycle and DNA replications of HepG2 cells, while it improved cell viability and reduced apoptosis, and it activated Akt and NFKB. But, it did not produce an effect on cell viability and apoptosis when P13K/Akt pathway was blocked by LY294002 nor when $NF{\kapa}B$ activation was blocked by DN-$I{\kapa}B$. Conclusion : These results suggests that Saengkankunbi-tang improves cell viability and reduces apoptosis of HepG2 cells, by activating $NF{\kapa}B$ through PI3K/Akt pathway.

  • PDF

N-(p-Coumaryol)-Tryptamine Suppresses the Activation of JNK/c-Jun Signaling Pathway in LPS-Challenged RAW264.7 Cells

  • Vo, Van Anh;Lee, Jae-Won;Park, Jun-Ho;Kwon, Jae-Hyun;Lee, Hee Jae;Kim, Sung-Soo;Kwon, Yong-Soo;Chun, Wanjoo
    • Biomolecules & Therapeutics
    • /
    • 제22권3호
    • /
    • pp.200-206
    • /
    • 2014
  • N-(p-Coumaryol) tryptamine (CT), a phenolic amide, has been reported to exhibit anti-oxidant and anti-inflammatory activities. However, the underlying mechanism by which CT exerts its pharmacological properties has not been clearly demonstrated. The objective of this study is to elucidate the anti-inflammatory mechanism of CT in lipopolysaccharide (LPS)-challenged RAW264.7 macrophage cells. CT significantly inhibited LPS-induced extracellular secretion of pro-inflammatory mediators such as nitric oxide (NO) and $PGE_2$, and protein expressions of iNOS and COX-2. In addition, CT significantly suppressed LPS-induced secretion of pro-inflammatory cytokines such as TNF-${\alpha}$ and IL-$1{\beta}$. To elucidate the underlying anti-inflammatory mechanism of CT, involvement of MAPK and Akt signaling pathways was examined. CT significantly attenuated LPS-induced activation of JNK/c-Jun, but not ERK and p38, in a concentration-dependent manner. Interestingly, CT appeared to suppress LPS-induced Akt phosphorylation. However, JNK inhibition, but not Akt inhibition, resulted in the suppression of LPS-induced responses, suggesting that JNK/c-Jun signaling pathway significantly contributes to LPS-induced inflammatory responses and that LPS-induced Akt phosphorylation might be a compensatory response to a stress condition. Taken together, the present study clearly demonstrates CT exerts anti-inflammatory activity through the suppression of JNK/c-Jun signaling pathway in LPS-challenged RAW264.7 macrophage cells.

Ginsenoside compound K reduces ischemia/reperfusion-induced neuronal apoptosis by inhibiting PTP1B-mediated IRS1 tyrosine dephosphorylation

  • Jing, Fu;Liang, Yu;Qian, Yu;Nengwei, Yu;Fei, Xu;Suping, Li
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.274-282
    • /
    • 2023
  • Background: Ginsenoside compound K (CK) stimulated activation of the PI3K-Akt signaling is one of the major mechanisms in promoting cell survival after stroke. However, the underlying mediators remain poorly understood. This study aimed to explore the docking protein of ginsenoside CK mediating the neuroprotective effects. Materials and methods: Molecular docking, surface plasmon resonance, and cellular thermal shift assay were performed to explore ginsenoside CK interacting proteins. Neuroscreen-1 cells and middle cerebral artery occlusion (MCAO) model in rats were utilized as in-vitro and in-vivo models. Results: Ginsenoside CK interacted with recombinant human PTP1B protein and impaired its tyrosine phosphatase activity. Pathway and process enrichment analysis confirmed the involvement of PTP1B and its interacting proteins in PI3K-Akt signaling pathway. PTP1B overexpression reduced the tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) after oxygen-glucose deprivation/reoxygenation (OGD/R) in neuroscreen-1 cells. These regulations were confirmed in the ipsilateral ischemic hemisphere of the rat brains after MCAO/R. Ginsenoside CK treatment reversed these alterations and attenuated neuronal apoptosis. Conclusion: Ginsenoside CK binds to PTP1B with a high affinity and inhibits PTP1B-mediated IRS1 tyrosine dephosphorylation. This novel mechanism helps explain the role of ginsenoside CK in activating the neuronal protective PI3K-Akt signaling pathway after ischemia-reperfusion injury.

HepG2 인체 간암세포의 ROS 생성 및 ERK/Akt 신호전달 경로 조절을 통한 sanguinarine의 apoptosis 유도 (Sanguinarine Induces Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells through the Generation of ROS and Modulation of Akt/ERK Signaling Pathways)

  • 황주영;최영현
    • 생명과학회지
    • /
    • 제25권9호
    • /
    • pp.984-992
    • /
    • 2015
  • 혈근초(Sanguinaria canadensis)에서 처음 분리된 sanguinarine은 항산화, 항암 및 면역 증강 등의 효능이 있는 것으로 알려진 alkaloid 계열 물질 중의 하나이다. 본 연구에서는 인체간암 HepG2 세포를 대상으로 sanguinarine의 apoptosis 유도 효능 및 관련 기전 해석을 시도하였다. 본 연구의 결과에 의하면 sanguinarine은 HepG2 간암세포의 증식을 처리 농도 의존적으로 억제하였으며, 이는 apoptosis 유도와 연관성이 있었다. Sanguinarine에 의한 apoptosis 유도에는 Fas 및 Bax의 발현 증가, 미토콘드리아에서 세포질로의 cytochrome c 유리 및 MMPl (Δψm)의 소실을 동반하였다. Sanguinarine은 intrinsic 및 extrinsic apoptosis pathway의 활성에 관여하는 initiator caspase인 caspase-9와 -8의 활성과 effector caspase인 caspase-3의 활성 및 PARP 단백질의 단편화를 유발하였다. Sanguinarine은 또한 ROS의 생성을 촉진시켰으며, N-acetylcysteine 처리에 의한 ROS의 생성을 차단하였을 경우, sanguinarine에 의한 apoptosis 효능이 완벽하게 차단되었다. 아울러 sanguinarine은 Akt의 인산화를 억제한 반면, MAPKs의 인산화를 촉진시켰으며, 특히 PI3K와 ERK의 선택적 억제제는 sanguinarine에 의한 HepG2 간암세포의 증식을 더욱 억제시켰다. 따라서 sanguinarine에 의한 HepG2 간암세포의 apoptosis 유발에는 ROS 생성 의존적인 intrinsic 및 extrinsic signaling pathway가 동시에 활성화되며, PI3K/Akt 및 ERK 신호계가 관여함을 알 수 있었다.

렛 근육세포 L6에서 둥굴레 추출물의 인슐린저항성 개선 (Attenuation of insulin resistance using steamed Polygonatum odoratum var pluriflorum extract in rat skeletal muscle cells L6 myoblast)

  • 최미애
    • 대한본초학회지
    • /
    • 제31권1호
    • /
    • pp.1-5
    • /
    • 2016
  • Objectives : The purpose of this study was to investigate inhibitory effects of steamed Polygonatum odoratum extract (POE) on insulin resistance in rat skeletal muscle cells, L6 cells.Methods : Polygonatum odoratum (P. odoratum) extract was extracted with ethyl acetate. Activity of α-glucosidase in POE was measured for blood glucose regulation. MTT assay was examined for cell toxicity. Western blot analysis for measurement of adiponectine, peroxisome proliferator-activated receptorγ (PPARγ), insulin receptor substrate (IRS), glucose transporter 4 (Glut-4) and phosphorylation of serine/threonine-specific protein kinase (Akt) expressions were performed. Akt signaling pathway were analyzed with LY294002, which is a specific PI3K/Akt inhibitor.Results : The results revealed that POE inhibited α-glucosidase activity. Treatment of POE in L6 cells inhibited the differentiation of L6 cells compared to those of vehicl control. Additionally, protein expressions of adiponectine, PPARγ, IRS and Glut-4 were significantly regulated compared to those of vehicle control (p < 0.05), respectively. Futhermore, phosphorylation of Akt was increased in L6 cells treated with POE compared to that of vehicle control (p < 0.05). pAkt expression was significantly accentuated with Akt inhibitor (LY294002).Conclusions : These results suggest that POE may have potential as a natural agent for prevention/improvement of diabetes, especially, regulation of blood glucose. Therefore, further additional study should be conducted to elucidate in depth the pharmaceutical efficacy of these.

1,3,4-Thiadiazole 유도체의 합성 및 Akt1 카이네이즈 저해 활성 (Synthesis and Akt1 Kinase Inhibitory Activity of 1,3,4-Thiadiazole Derivatives)

  • 유경호;김세영;류재천
    • 한국응용과학기술학회지
    • /
    • 제25권3호
    • /
    • pp.370-379
    • /
    • 2008
  • Akt, a serine/threonine protein kinase as a viral oncogene, is a critical regulator of PI3K-mediated cell proliferation and survival. On translocation, Akt is phosphorylated and activated, ultimately resulting in stimulation of cell growth and survival. As a part of our program toward the novel Akt1 inhibitors with potent activity over PI3K signaling pathway, we found primary hit compound 2 with an $IC_{50}$ value of $620\mu}M$ from protein kinase focused library. Based on the structural features of 2, new 1,3,4-thiadiazole derivatives were designed by the introduction of aromatic and heteroaromatic moieties onto thiadiazole nucleus. In this work, a series of 1,3,4-thiadiazole derivatives 1a-1 were synthesized and evaluated for Akt1 inhibitory activity.

두경부편평세포암종에서 Gleevec의 효과 (Effect of Gleevec on Head and Neck Squamous Cell Carcinoma)

  • 주형로
    • 대한두경부종양학회지
    • /
    • 제21권2호
    • /
    • pp.158-164
    • /
    • 2005
  • Purpose: The serine/threonine kinase Akt was described to inhibit apoptosis in cancer. This study was to examine the effect of Gleevec on head and neck squamous cell carcinoma(HNSCC) through the mechanism of Akt. Experimental Design: Gleevec was introduced into the HNSCC cell lines UMSCC10B, HN12 and HN30 in a range of concentrations. Cell viability was assessed by clonogenic survival analysis. Targets of Gleevec(PDGFR, c-Kit, and c-Abl) were evaluated by Western blot. HNSCC tissue samples were stained for PDGFR, c-Kit and phosphorylated Akt. Akt phosphorylation following Gleevec treatment was assessed using Western blot. Akt siRNA was used to as the positive control. Results: Colony forming efficiency decreased with an increase in concentration of Gleevec. Expressions of PDGFR, c-Kit, and c-Abl were observed in HNSCC cells. Immunohistochemistry confirmed high expression of PDGFR, c-Kit, and p-Akt in human HNSCC tissues. Akt kinase activity was significantly inhibited with increasing concentration of Gleevec in HNSCC cells, and near complete dephosphorylation of Akt was observed at $6{\mu}M$ of Gleevec in the UMSCC10B and HN30 cell lines. Conclusions: Gleevec at clinically comparable concentrations caused a dose dependant decrease in HNSCC survival. The decreased cell survival was related to the inhibition of Akt kinase activity and dephosphorylation of Akt. Akt signaling pathway may be a relevant target for Gleevec in treating HNSCC.

Inhalation Toxicity of Particulate Matters Doped with Arsenic Induced Genotoxicity and Altered Akt Signaling Pathway in Lungs of Mice

  • Park, Jin-Hong;Kwon, Jung-Taek;Minai-Teherani, Arassh;Hwang, Soon-Kyung;Chang, Seung-Hee;Lim, Hwang-Tae;Cho, Hyun-Seon;Cho, Myung-Haing
    • Toxicological Research
    • /
    • 제26권4호
    • /
    • pp.261-266
    • /
    • 2010
  • In the workplace, the arsenic is used in the semiconductor production and the manufacturing of pigments, glass, pesticides and fungicides. Therefore, workers may be exposed to airborne arsenic during its use in manufacturing. The purpose of this study was to evaluate the potential toxicity of particulate matters (PMs) doped with arsenic (PMs-Arsenic) using a rodent model and to compare the genotoxicity in various concentrations and to examine the role of PMs-Arsenic in the induction of signaling pathway in the lung. Mice were exposed to PMs $124.4{\pm}24.5\;{\mu}g/m^3$ (low concentration), $220.2{\pm}34.5\;{\mu}g/m^3$ (middle concentration), $426.4{\pm}40.3\;{\mu}g/m^3$ (high concentration) doped with arsenic $1.4\;{\mu}g/m^3$ (Low concentration), $2.5\;{\mu}g/m^3$ (middle concentration), $5.7\;{\mu}g/m^3$ (high concentration) for 4 wks (6 h/d, 5 d/wk), respectively in the whole-body inhalation exposure chambers. To determine the level of genotoxicity, Chromosomal aberration (CA) assay in splenic lymphocytes and Supravital micronucleus (SMN) assay were performed. Then, signal pathway in the lung was analyzed. In the genotoxicity experiments, the increases of aberrant cells were concentration-dependent. Also, PMs-arsenic caused peripheral blood micronucleus frequency at high concentration. The inhalation of PMs-Arsenic increased an expression of phosphorylated Akt (p-Akt: protein kinase B) and phpsphorylated mammalian target of rapamycin (p-mTOR) at high concentration group. Taken together, inhaled PMs-Arsenic caused genotoxicity and altered Akt signaling pathway in the lung. Therefore, the inhalation of PMs-Arsenic needs for a careful risk assessment in the workplace.