• Title/Summary/Keyword: Aksaray

Search Result 50, Processing Time 0.025 seconds

Damages to Rubble Stone Masonry Structures during the January 24, 2020, Sivrice (Elazığ) Earthquake in Turkey

  • Ural, Ali;Firat, Fatih K.;Kara, Mehmet E.;Celik, Tulin;Tanriverdi, Sukran
    • Earthquakes and Structures
    • /
    • v.23 no.3
    • /
    • pp.231-243
    • /
    • 2022
  • The earthquake with a magnitude of Mw 6.8, which occurred on January 24, 2020, hit Sivrice (Elazığ) province of Turkey. The earthquake area takes place on the East Anatolian Fault Zone (EAFZ) located between the Arabian and Turkish plates, one of the most active seismic regions in Turkey. According to the Disaster and Emergency Management Presidency of Turkey (AFAD), 584 buildings collapsed, 6845 were heavily damaged, 1207 were moderately damaged, and 14389 were slightly damaged. The authors went to the region of earthquake after the mainshock to investigate the earthquake performances of masonry buildings. This paper presents the seismological aspects of the earthquake, acceleration records, and response spectra with different damping ratios. Furthermore, some typical damages and failure mechanisms on masonry buildings like rubble stone dwellings and minarets are discussed with illustrative photos. Although many major earthquakes have occurred in the region, similar mistakes are still being made in masonry building construction. In consequence, some suggestions viewpoint of the wooden tie beams, the corner details of masonry walls, the door and window openings, the metal fasteners and the earthquake codes are made to be more careful in masonry constructions at the end of the article.

Extraction of high thermally stable and nanofibrous chitin from Cicada (Cicadoidea)

  • MOL, Abbas;KAYA, Murat;MUJTABA, Muhammad;AKYUZ, Bahar
    • Entomological Research
    • /
    • v.48 no.6
    • /
    • pp.480-489
    • /
    • 2018
  • Due to the increasing interest in natural biopolymers including chitin, the exploitation of economic and easily accessible chitin sources with good physicochemical properties is nowadays required. In view of this fact, in the current study chitin was extracted and physicochemically characterized from six Cicadas (Hemiptera: Homoptera: Cicadoidea) species collected from Mediterranean region of Turkey (2014-15). Chitin was extracted using a classic extraction method that includes acid and base treatment. TGA results revealed a remarkable increase ($410-412^{\circ}C$) for all the six Cicada species compared to other chitin samples extracted from various sources. For all of the six selected species the chitin contents on the dry basis were determined as 6.7% for Cicadatra atra, 5.51% for C. hyalina, 8.84% for C. platyptera, 4.97% for Cicada lodosi, 6.49% for C. mordoganensis, and 5.88% for Cicadetta tibialis. The surface morphology of chitin isolates from Cicada species was observed to consist of nanofibers and nanopores.

An investigation of anchorage to the edge of steel plates bonded to RC structures

  • Kara, M.E.;Firat, F.K.;Sonmez, M.;Karabork, T.
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.25-43
    • /
    • 2016
  • This paper presents the results of an experimental study investigating the effects of anchorage systems used in externally bonded steel plates on the strength and ductility of reinforced concrete structures. In the literature, diagonal steel plates bonded to frames were designed to be more flexible than the connections to eliminate the possible effect of the connection flexibility. However, to better evaluate the performance of the strengthened structures, the strength and behavior of connections should also be considered. The purpose of this study was to experimentally investigate the effects of different connection types of steel plates bonded to the frame using anchors on the strengthened RC structures. For this purpose, eleven specimens were designed to simulate the interior and exterior connection behavior. Two of these were used as the control beams and remaining nine for the investigation of the functionality of the end steel plates. Experimental results show that the load carrying capacity of the strengthened beams is directly related to the connection types of the steel plates. For the interior connections, L-shaped end plates that were strengthened using steel anchors must have adequate stiffness to prevent its shape. While, for the exterior connections, the connection with three anchors carried more load than the other exterior connections.

Infill wall effects on the dynamic characteristics of RC frame systems via operational modal analysis

  • Komur, Mehmet A.;Kara, Mehmet E.;Deneme, Ibrahim O.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.121-128
    • /
    • 2020
  • This paper presents an experimental study on the dynamic characteristics of infilled reinforced concrete (RC) frames. A 1/3-scaled, one-bay, three-storey RC frame was produced and tested by using operational modal analysis (OMA). The experiments were performed on five specimens: one reference frame with no infill walls and four frames with infill walls. The RC frame systems included infill walls made of hollow clay brick, which were constructed in four different patterns. The dynamic characteristics of the patterns, including the frequency, mode shapes and damping ratios in the in-plane direction, were obtained by 6 accelerometers. Twenty-minute records under ambient vibration were collected for each model, and the dynamic characteristics were determined using the ambient vibration testing and modal identification software (ARTeMIS). The experimental studies showed that the infill walls significantly affected the frequency value, rigidity and damping ratio of the RC frame system.

Response evaluation of historical crooked minaret under wind and earthquake loadings

  • Ural, Ali;Dogangun, Adem;Meraki, Sakir
    • Wind and Structures
    • /
    • v.17 no.3
    • /
    • pp.345-359
    • /
    • 2013
  • Turkey has been hosted various civilizations throughout centuries and it has become one of the oldest settlements all over the world due to the geographical location. Therefore, it has accommodated innumerable historical structures remain from the past civilizations. Protection and conservation of these historical constructions should be the major points for continuity of history. Crooked minaret is one of between these historical invaluable structures. It is located at the city of Aksaray and it dates back approximately 800 years. The minaret has lost its vertical position in time and bends on the North-West direction. In this study, general information is given about minarets and some restoration recommendations are given for crooked minaret based on performed some finite element structural analyses. These analyses are considered into three cases; 1-Dead loading, 2-Wind loading, and 3-Earthquake loadings. Results from the analyses are discussed detailed and some useful recommendations are given in the end of the study.

SOME RESULTS ON INVARIANT SUBMANIFOLDS OF AN ALMOST KENMOTSU (𝜅, 𝜇, 𝜈)-SPACE

  • ATCEKEN, Mehmet;YUCA, Gulsum
    • Honam Mathematical Journal
    • /
    • v.43 no.4
    • /
    • pp.655-665
    • /
    • 2021
  • In the present paper, we study the geometric properties of the invariant submanifold of an almost Kenmotsu structure whose Riemannian curvature tensor has (𝜅, 𝜇, 𝜈)-nullity distribution. In this connection, the necessary and sufficient conditions are investigated for an invariant submanifold of an almost Kenmotsu (𝜅, 𝜇, 𝜈)-space to be totally geodesic under the behavior of functions 𝜅, 𝜇, and 𝜈.

A comparison of the effect of SSI on base isolation systems and fixed-base structures for soft soil

  • Karabork, T.;Deneme, I.O.;Bilgehan, R.P.
    • Geomechanics and Engineering
    • /
    • v.7 no.1
    • /
    • pp.87-103
    • /
    • 2014
  • This study investigated the effect of soil-structure interaction (SSI) on the response of base-isolated buildings. Seismic isolation can significantly reduce the induced seismic loads on a relatively stiff building by introducing flexibility at its base and avoiding resonance with the predominant frequencies of common earthquakes. To provide a better understanding of the movement behavior of multi-story structures during earthquakes, this study analyzed the dynamic behavior of multi-story structures with high damping rubber bearing (HDRB) behavior base isolation systems that were built on soft soil. Various models were developed, both with and without consideration of SSI. Both the superstructure and soil were modeled linearly, but HDRB was modeled non-linearly. The behavior of the specified models under dynamic loads was analyzed using SAP2000 computer software. Erzincan, Marmara and Duzce Earthquakes were chosen as the ground motions. Following the analysis, the displacements, base shear forces, top story accelerations, base level accelerations, periods and maximum internal forces were compared in isolated and fixed-base structures with and without SSI. The results indicate that soil-structure interaction is an important factor (in terms of earthquakes) to consider in the selection of an appropriate isolator for base-isolated structures on soft soils.

January 24, 2020 Sivrice Earthquake and the response of the masonry Haci Yusuf Tas (New) mosque

  • Firat, Fatih K.;Ural, Ali;Kara, Mehmet E.
    • Earthquakes and Structures
    • /
    • v.22 no.4
    • /
    • pp.331-343
    • /
    • 2022
  • Masonry structures are the most common structural systems that have been used almost all over the world from the earliest ages of history to the present day. These structural systems are often unfavorably affected by natural disasters such as earthquakes. The main reason for this is that they are built without sufficient engineering knowledge. On January 24, 2020, a severe earthquake occurred near the Sivrice District of Elazığ in eastern Turkey. According to the Turkish Directorate of Disaster and Emergency Management (AFAD), the magnitude of the earthquake was 6.8 and the focal depth 8 km. This earthquake caused damage and destruction to the masonry structures used extensively in the region. The Hacı Yusuf Taş (new) mosque in the Malatya city center, located about 64 km from the epicenter of the earthquake, was among the buildings affected by the earthquake. The mosque has smooth-cut stone walls and domes made of brick units. The main dome of the structure was severely damaged during the earthquake. In this study, information about the earthquake is first provided, and the damage to the mosque is then interpreted via photographs. In addition, two separate finite element models were produced, where the current state of mosque and solution suggestions are presented, and response spectrum analyses were carried out. According to these analyses and field observations, a buttress system to the main walls of the structure should be constructed in the direction which has little lateral rigidity.

Maturation effect on strength of high-strength concretes which produced with different origin aggregates

  • Kaya, Mustafa;Komur, M. Aydin;Gursel, Ercin
    • Advances in concrete construction
    • /
    • v.14 no.2
    • /
    • pp.115-130
    • /
    • 2022
  • This paper presents an application of the maturation effect on the strength of high-strength concrete which is produced with different origin aggregates. While investigating the maturation effect on HSC 384 specimens were prepared with 22 different origin aggregates. These prepared specimens were subjected to the standard compressive tests which were applied after curing for 2, 7, 28, and 56 days under appropriate conditions. The test results revealed that bright surface-low adherence behavior is valid in normal strength concretes, but is not as effective as expected in high-strength concretes. The application of artificial neural networks (ANNs) to predict 2, 7, 28, and 56 day compressive strength of HSC is also investigated in this paper. An ANN model is built, trained, and tested using the available test data gathered from experimental studies. The ANN model is found to predict 2, 7, 28, and 56 days of compressive strength of high-strength concrete well within the ranges of the input parameters considered. These comparisons show that ANNs have strong potential as a feasible tool for predicting the compressive strength of high-strength concrete within the range of the input parameters considered.