• Title/Summary/Keyword: Akaike Information Criterion

Search Result 113, Processing Time 0.026 seconds

Can Housing Prices Be an Alternative to a Census-based Deprivation Index? An Evaluation Based on Multilevel Modeling (주택가격이 센서스에 기반한 박탈지수의 대안이 될 수 있는가?: 다수준 모델에 기반한 평가)

  • Sohn, Chul;Nakaya, Tomoki
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.2
    • /
    • pp.197-211
    • /
    • 2018
  • We conducted this research to examine how well regional housing prices are suited to use as an alternative to conventional census-based regional deprivation indices in health and medical geography studies. To examine the relative performance of mean regional housing prices compared to conventional census-based regional deprivation indices, we compared several multilevel logistic regression models, where the first level was individuals and the second was health districts in the Seoul Metropolitan Area (SMA) in Korea, for the sake of adjusting the regional clustering tendency of unknown factors. In these models, we predicted two dichotomous variables that represented individuals' after-lunch tooth brushing behavior and use of dental floss by individual characteristics and regional indices. Then, we compared the relative predictive performance of the models using the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). The results from the estimations showed that mean regional housing prices and census-based deprivation indices were correlated with the two types of dental health behavior in a statistical sense. The results also revealed that the model with mean regional housing prices showed smaller AIC and BIC compared with other models with conventional census-based deprivation indices. These results imply that it is possible for housing prices summarized using aerial units to be used as an alternative to conventional census-based deprivation indices when the census variables employed cannot properly reflect the characteristics of the aerial units.

Comparison between Parametric and Semi-parametric Cox Models in Modeling Transition Rates of a Multi-state Model: Application in Patients with Gastric Cancer Undergoing Surgery at the Iran Cancer Institute

  • Zare, Ali;Mahmoodi, Mahmood;Mohammad, Kazem;Zeraati, Hojjat;Hosseini, Mostafa;Naieni, Kourosh Holakouie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6751-6755
    • /
    • 2013
  • Background: Research on cancers with a high rate of mortality such as those occurring in the stomach requires using models which can provide a closer examination of disease processes and provide researchers with more accurate data. Various models have been designed based on this issue and the present study aimed at evaluating such models. Materials and Methods: Data from 330 patients with gastric cancer undergoing surgery at Iran Cancer Institute from 1995 to 1999 were analyzed. Cox-Snell Residuals and Akaike Information Criterion were used to compare parametric and semi-parametric Cox models in modeling transition rates among different states of a multi-state model. R 2.15.1 software was used for all data analyses. Results: Analysis of Cox-Snell Residuals and Akaike Information Criterion for all probable transitions among different states revealed that parametric models represented a better fitness. Log-logistic, Gompertz and Log-normal models were good choices for modeling transition rate for relapse hazard (state $1{\rightarrow}state$ 2), death hazard without a relapse (state $1{\rightarrow}state$ 3) and death hazard with a relapse (state $2{\rightarrow}state$ 3), respectively. Conclusions: Although the semi-parametric Cox model is often used by most cancer researchers in modeling transition rates of multistate models, parametric models in similar situations- as they do not need proportional hazards assumption and consider a specific statistical distribution for time to occurrence of next state in case this assumption is not made - are more credible alternatives.

The Development of Biomass Model for Pinus densiflora in Chungnam Region Using Random Effect (임의효과를 이용한 충남지역 소나무림의 바이오매스 모형 개발)

  • Pyo, Jungkee;Son, Yeong Mo
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.2
    • /
    • pp.213-218
    • /
    • 2017
  • The purpose of this study was to develop age-biomass model in Chungnam region containing random effect. To develop the biomass model by species and tree component, data for Pinus densiflora in central region is collected to 30 plots (150 trees). The mixed model were used to fixed effect in the age-biomass relation for Pinus densiflora, with random effect representing correlation of survey area were obtained. To verify the evaluation of the model for random effect, the akaike information criterion (abbreviated as, AIC) was used to calculate the variance-covariance matrix, and residual of repeated data. The estimated variance-covariance matrix, and residual were -1.0022, 0.6240, respectively. The model with random effect (AIC=377.2) has low AIC value, comparison with other study relating to random effects. It is for this reason that random effect associated with categorical data were used in the data fitting process, the model can be calibrated to fit the Chungnam region by obtaining measurements. Therefore, the results of this study could be useful method for developing biomass model using random effects by region.

Non-stationary frequency analysis of monthly maximum daily rainfall in summer season considering surface air temperature and dew-point temperature (지표면 기온 및 이슬점 온도를 고려한 여름철 월 최대 일 강수량의 비정상성 빈도해석)

  • Lee, Okjeong;Sim, Ingyeong;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.338-344
    • /
    • 2018
  • In this study, the surface air temperature (SAT) and the dew-point temperature (DPT) are applied as the covariance of the location parameter among three parameters of GEV distribution to reflect the non-stationarity of extreme rainfall due to climate change. Busan station is selected as the study site and the monthly maximum daily rainfall depth from May to October is used for analysis. Various models are constructed to select the most appropriate co-variate(SAT and DPT) function for location parameter of GEV distribution, and the model with the smallest AIC(Akaike Information Criterion) is selected as the optimal model. As a result, it is found that the non-stationary GEV distribution with co-variate of exp(DPT) is the best. The selected model is used to analyze the effect of climate change scenarios on extreme rainfall quantile. It is confirmed that the design rainfall depth is highly likely to increase as the future DPT increases.

Signal Number Estimation Algorithm Based on Uniform Circular Array Antenna

  • Heui-Seon, Park;Hongrae, Kim;Suk-seung, Hwang
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.43-49
    • /
    • 2023
  • In modern wireless communication systems including beamformers or location-based services (LBS), which employ multiple antenna elements, estimating the number of signals is essential for accurately determining the quality of the communication service. Representative signal number estimation algorithms including the Akaike information criterion (AIC) and minimum description length (MDL) algorithms, which are information theoretical criterion models, determine the number of signals based on a reference value that minimizes each criterion. In general, increasing the number of elements mounted onto the array antenna enhances the performance of estimating the number of signals; however, it increases the computational complexity of the estimation algorithm. In addition, various configurations of array antennas for the increased number of antenna elements should be considered to efficiently utilize them in a limited location. In this paper, we introduce an efficient signal number estimation algorithm based on the beamspace based AIC and MDL techniques that reduce the computational complexity by reducing the dimension of a uniform circular array antenna. Since this algorithm is based on a uniform circular array antenna, it presents the advantages of a circular array antenna. The performance of the proposed signal number estimation algorithm is evaluated through computer simulation examples.

Computational analysis of SARS-CoV-2, SARS-CoV, and MERS-CoV genome using MEGA

  • Sohpal, Vipan Kumar
    • Genomics & Informatics
    • /
    • v.18 no.3
    • /
    • pp.30.1-30.7
    • /
    • 2020
  • The novel coronavirus pandemic that has originated from China and spread throughout the world in three months. Genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) predecessor, severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) play an important role in understanding the concept of genetic variation. In this paper, the genomic data accessed from National Center for Biotechnology Information (NCBI) through Molecular Evolutionary Genetic Analysis (MEGA) for statistical analysis. Firstly, the Bayesian information criterion (BIC) and Akaike information criterion (AICc) are used to evaluate the best substitution pattern. Secondly, the maximum likelihood method used to estimate of transition/transversions (R) through Kimura-2, Tamura-3, Hasegawa-Kishino-Yano, and Tamura-Nei nucleotide substitutions model. Thirdly and finally nucleotide frequencies computed based on genomic data of NCBI. The results indicate that general times reversible model has the lowest BIC and AICc score 347,394 and 347,287, respectively. The transition/transversions bias for nucleotide substitutions models varies from 0.56 to 0.59 in MEGA output. The average nitrogenous bases frequency of U, C, A, and G are 31.74, 19.48, 28.04, and 20.74, respectively in percentages. Overall the genomic data analysis of SARS-CoV-2, SARS-CoV, and MERS-CoV highlights the close genetic relationship.

Traffic Forecasting Model Selection of Artificial Neural Network Using Akaike's Information Criterion (AIC(AKaike's Information Criterion)을 이용한 교통량 예측 모형)

  • Kang, Weon-Eui;Baik, Nam-Cheol;Yoon, Hye-Kyung
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.7 s.78
    • /
    • pp.155-159
    • /
    • 2004
  • Recently, there are many trials about Artificial neural networks : ANNs structure and studying method of researches for forecasting traffic volume. ANNs have a powerful capabilities of recognizing pattern with a flexible non-linear model. However, ANNs have some overfitting problems in dealing with a lot of parameters because of its non-linear problems. This research deals with the application of a variety of model selection criterion for cancellation of the overfitting problems. Especially, this aims at analyzing which the selecting model cancels the overfitting problems and guarantees the transferability from time measure. Results in this study are as follow. First, the model which is selecting in sample does not guarantees the best capabilities of out-of-sample. So to speak, the best model in sample is no relationship with the capabilities of out-of-sample like many existing researches. Second, in stability of model selecting criterion, AIC3, AICC, BIC are available but AIC4 has a large variation comparing with the best model. In time-series analysis and forecasting, we need more quantitable data analysis and another time-series analysis because uncertainty of a model can have an effect on correlation between in-sample and out-of-sample.

Flood Frequency Analysis Considering Probability Distribution and Return Period under Non-stationary Condition (비정상성 확률분포 및 재현기간을 고려한 홍수빈도분석)

  • Kim, Sang Ug;Lee, Yeong Seob
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.7
    • /
    • pp.567-579
    • /
    • 2015
  • This study performed the non-stationary flood frequency analysis considering time-varying parameters of a probability density function. Also, return period and risk under non-stationary condition were estimated. A stationary model and three non-stationary models using Generalized Extreme Value(GEV) were developed. The only location parameter was assumed as time-varying parameter in the first model. In second model, the only scale parameter was assumed as time-varying parameter. Finally, the both parameters were assumed as time varying parameter in the last model. Relative likelihood ratio test and Akaike information criterion were used to select appropriate model. The suggested procedure in this study was applied to eight multipurpose dams in South Korea. Using relative likelihood ratio test and Akaike information criterion it is shown that the inflow into the Hapcheon dam and the Seomjingang dam were suitable for non-stationary GEV model but the other six dams were suitable for stationary GEV model. Also, it is shown that the estimated return period under non-stationary condition was shorter than those estimated under stationary condition.

A Research of Prediction of Photovoltaic Power using SARIMA Model (SARIMA 모델을 이용한 태양광 발전량 예측연구)

  • Jeong, Ha-Young;Hong, Seok-Hoon;Jeon, Jae-Sung;Lim, Su-Chang;Kim, Jong-Chan;Park, Hyung-Wook;Park, Chul-Young
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.1
    • /
    • pp.82-91
    • /
    • 2022
  • In this paper, time series prediction method of photovoltaic power is introduced using seasonal autoregressive integrated moving average (SARIMA). In order to obtain the best fitting model by a time series method in the absence of an environmental sensor, this research was used data below 50% of cloud cover. Three samples were extracted by time intervals from the raw data. After that, the best fitting models were derived from mean absolute percentage error (MAPE) with the minimum akaike information criterion (AIC) or beysian information criterion (BIC). They are SARIMA (1,0,0)(0,2,2)14, SARIMA (1,0,0)(0,2,2)28, SARIMA (2,0,3)(1,2,2)55. Generally parameter of model derived from BIC was lower than AIC. SARIMA (2,0,3)(1,2,2)55, unlike other models, was drawn by AIC. And the performance of models obtained by SARIMA was compared. MAPE value was affected by the seasonal period of the sample. It is estimated that long seasonal period samples include atmosphere irregularity. Consequently using 1 hour or 30 minutes interval sample is able to be helpful for prediction accuracy improvement.

The Causality of Ocean Freight (운임의 인과성)

  • Mo, Soo-Won
    • Journal of Korea Port Economic Association
    • /
    • v.23 no.4
    • /
    • pp.216-227
    • /
    • 2007
  • The aim of this paper is to find out the nature of causality between the two ocean freights employing the Granger method. That is because the Baltic freights tend to move very closely and seem to be behave like one time series. The Granger causality test, however, is very sensitive to the number of lags used in the analysis. This means that one has to be very careful in implementing the Granger causality test. This paper, hence, uses more rather than the lags which the Akaike Information Criterion and the Schwarz Information Criterion suggest. This study shows that BPI does not "Granger-cause" BCI and BSI, but BCI and BSI Granger-cause BPI. I also discover that BHSI does not "Granger-cause" BPI and BSI, but BPI and BSI Granger-cause BHSI. I, hence, model and estimate the ocean freight function and show that the Baltic ocean freight market is inefficient and the biased estimator of the other freight.

  • PDF