• Title/Summary/Keyword: Airtightness Performance

Search Result 55, Processing Time 0.028 seconds

Adsorption properties of non-cement boards using adsorbent (흡착재를 활용한 흡착형 무시멘트 보드의 흡착 특성)

  • Pyeon, Su-Jeong;Lim, Hyun-ung;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.226-227
    • /
    • 2018
  • Recently, as the interest of the government and the public on energy saving has increased, the airtightness of buildings has been improved to improve the insulation performance of buildings. However, indoor air pollution due to increase of pollution source in indoor space and lack of ventilation is increasing and interest in indoor air quality is increasing. In 2003, the Ministry of Environment enacted and promulgated the Act on Indoor Air Quality Control in Multi-use Facilities. Radon is a naturally occurring radioactive inert gas with colorless, tasteless and odorless nature. The concentration is high in a room where radon can not escape. Although lononggas is naturally occurring, it is not interested in living environment, but it is easily inhaled through human body through respiration and causes lung cancer in long-term exposure. Therefore, this study intends to carry out an experiment for the reduction of radon gas, which is the first carcinogen in indoor air pollution sources.

  • PDF

Development of Efficient Curing Sheet for Thermal Insulation Curing of Concrete in Cold Weather

  • Han, Cheon-Goo;Son, Myung-Sik;Choi, Hyun-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.291-298
    • /
    • 2012
  • For cold weather concreting, frost damage at early age is generated in the concrete, and problems such as delaying of setting and hardening and lowering of strength manifestation emerge due to the low outside air temperature at the early stage of pouring, making the selection of an effective curing method critically important. Unfortunately, the tent sheet currently used as the curing film for heating insulation at work sites, not only has the problems of inferior permeability and extremely deteriorated airtightness, but a phenomenon of continuous fracturing is also generated along the direction of fabric of the material itself, presenting difficult circumstances for maintaining adequate curing temperature. The aim of this study was to develop an improved bubble sheet type curing film for heating insulation of cold weather concrete by combining mesh-tarpaulin, which has excellent tension properties, with bubble sheet, which offers superior insulation performance. The analysis showed that the improved curing film in which BBS1 is stacked to MT was a suitable replacement for curing films currently in use, as it has better permeability, tension property, and insulation performance than the T type film used at work sites today.

A Performance Evaluation of Plate Type Enthalpy Exchanger through CFD Analysis of Elements (열 교환 소자 형상의 CFD 시뮬레이션을 통한 판형 전열 교환기 성능평가)

  • Kang, In-Sung;Ahn, Tae-Kyung;Park, Jin-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • In order to better save energy, many buildings have been constructed with high levels of insulation and airtightness in recent years. Additionally, having high quality indoor air has become more relevant, necessitating a ventilating system. This study is aimed at evaluating the performance of a humidity exchanger through computational fluid dynamics (CFD) analysis of elements for the purpose of providing comfortable indoor air and reduced energy consumption. The simulation was conducted with three different shapes (triangle, rectangular, and curve) of heat exchanger elements, in order to find the most effective element. A follow-up simulation then proved the efficiency of the chosen humidity exchanger, which was selected by analyzing the results of the preceding simulation, comparing study data with measurement data from the Korea Testing Laboratory (KTL). The resulting analysis revealed that the rectangular element showed the lowest level of efficiency in both heating and cooling, while the curved element showed the highest level of efficiency in both heating and cooling.

Improvement of Design Criteria in Heating and Cooling Equipment According to the Consolidation of Design Standard for Energy Saving in Apartment Buildings of Korea (국내 공동주택의 에너지절약 설계기준 강화에 따른 냉난방설비 설계 기준 개선 방안)

  • Lim, Jae-Han;Kim, Sung-Im;Song, Seung-Yeong
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.3
    • /
    • pp.89-97
    • /
    • 2014
  • Recently design standard for energy-saving in apartment buildings has been consolidated gradually on the basis of evaluation and certification standards of energy efficiency of buildings, the energy-saving policy of building at home and abroad. Performance criteria for thennal insulation as well as fenestration has been progressively enhanced, and performance criteria for ventilation and airtightness of the building have also been re-developed. Therefore, heating and cooling load characteristics of the apartment building can be changed. For the design of the upcoming heating and cooling equipment in apartment buildings, it is necessary to evaluate the heating and cooling load characteristics according to the design strategies for energy saving in apartment buildings. As a result, in this study, it is intended to use as a resource for analyzing the impact that the adoption of energy-saving design variables for each of the apartment buildings, to predict the heating and cooling load characteristics in the apartment building.

Energy Performance Evaluation of Apartment Houses According to Window Energy Consumption Efficiency Rating System in Korea (창호 에너지소비효율등급제에 따른 공동주택의 열성능 평가)

  • Lim, Hee Won;Kim, Dong Yun;Lee, Soo Man;An, Jung Hyuk;Yoon, Jong Ho;Shin, U Cheul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.4
    • /
    • pp.159-166
    • /
    • 2018
  • The Korean fenestration energy consumption efficiency rating system only considers thermal performance of the heat transfer coefficient (U-value) and airtightness excluding optical characteristics of the solar heat gain coefficient (SHGC). This study analyzed annual heating and cooling energy requirements on the middle floor of apartment by optical and thermal performance of windows to evaluate the suitability of the rating system. One hundred and twenty-eight windows were analyzed using THERM and WINDOW 7.4, and energy simulation for a reference model of an apartment house facing south was performed using TRNSYS 17. The results showed that window performance was the main factor in the heating and cooling load. The heating load of the reference model was 539 kWh to 2,022 kW, and the cooling load was 376 kWh to 1,443 kWh. The coefficient of determination ($R^2$) of the heating and cooling loads driven from the SHGC were 0.7437 and 0.9869, which are more compatible than those from the U-value, 0.0558 and 0.4781. Therefore, it is not reasonable to evaluate the energy performance of windows using only the U-value, and the Korean fenestration energy consumption efficiency rating system requires a new evaluation standard, including SHGC.

A Comparative Analysis on Cooling Energy of Heat Recovery Ventilator and Air Handling Unit in the Office Building (사무용 건물에서 전열교환 환기시스템과 일반공조기의 냉방에너지 비교분석에 관한 연구)

  • Jang, Ji-Hoon;Kim, Hyeonsoo;Auh, Jin-Sun;Leigh, Seung-Bok;Kim, Byungseon-Sean
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.123-128
    • /
    • 2016
  • Purpose: In order to save the energy consumption of buildings, buildings have been constructed with high performance insulation or airtightness. However, high performance insulation or air tightness has led to a poor indoor air quality. Therefore, HRV(Heat Recovery Ventilator) has received attention to save the energy consumption and insure a good air quality. Because existing research is almost about the performance of HRV in residential buildings, This study analyzed the effect of HRV on cooling energy consumption in commercial office building. Method: This study was proceeded at commercial office building in In-cheon. In order to evaluate the energy consumption of HRV, this study proposed two methods: estimating energy consumption of the room installed AHU(Air Handling Unit) system; estimating energy consumption of the room installed HRV system. Therefore, comparison of two methods was proceeded to evaluate energy performance of each method. Result: As the result of comparison between rooms installed AHU and HRV, the experiment showed that energy consumption of the room installed HRV system is about 22% less than the room of AHU system. This conclusion is considered because the room installed HRV system have maintained temperature well at set point temperature $26^{\circ}C$.

Optimum Method of Windows Remodeling of Existing Residential according to the Window Properties and Window Wall Ratio (창호의 성능 및 건물의 창면적비에 따른 기존 단독주택의 창호 리모델링 방안 연구)

  • Lee, Na-Eun;Ahn, Byung-Lip;Jeong, Hak-Geun;Kim, Jong-Hun;Jang, Cheol-Yong
    • KIEAE Journal
    • /
    • v.13 no.3
    • /
    • pp.71-78
    • /
    • 2013
  • A need for building energy efficiency is on the issue since energy demand in the building stock in Korea represents about 24% of the final energy consumption. As a way of improving the thermal performance of buildings for reducing maintenance costs and environmental conservation, a lot of effort is shown to improve the building energy efficiency by applying improvement of envelope insulation performance for buildings whose energy efficiency is low relatively through the remodeling. The windows of building envelopes are areas that lead to the biggest heat loss in the building. So windows are considered to be the primary target of energy efficiency in remodeling and various studies for windows have been done. Currently, however, only U-factor and airtightness of windows performance are regulated. Window wall ratio(WWR) and solar heat gain coefficient(SHGC) of windows are not considered when conducting the remodeling. In this study appropriate performance of windows(U-factor and SHGC) for existing residential is proposed according to the window wall ratio by using EnergyPlus. As the results of this study, the U-factor of windows representing the maximum energy savings is $1.0W/m^2K$ but in case of SHGC, the values that indicate the maximum energy savings are different depending on the window wall ratio. Therefore, when conducting the remodeling of windows, to determine energy efficiency by considering only the U-factor is inadequate so it is necessary that appropriate windows are applied to buildings by considering window wall ratio and windows properties(U-factor and SHGC).

Study for Improvement of Domestic System through Regulation based on Comparison of Green Building Certification System Analysis - Focused on the G-SEED, BREEAM

  • Hyun, Eun-Mi;Kim, Yong-Sik
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.13-20
    • /
    • 2015
  • The main purpose of the green buildings by reducing energy consumption and carbon footprint of the building society, global as to ensure the sustainability of the building and the environment. These regulations and schemes are used to activate the green buildings were made on the basis of the relevant laws and regulations. Mainly in the research for the improvement of the domestic institutional assessment items, the analysis of the legislation was fundamentally focused on Scoring the incomplete state. The analysis based on the laws and regulations of the institution is the way to know the purpose and direction of the respective certification. This study was performed in the following order to target the new commercial buildings. First, the analysis of the geungeobeop G-SEED and BREEAM. Second, we analyze the content and method of building energy performance in the certification system. As a result, Green Building Act is broad in relation to the composition of the contents are building for the activation energy green building and EPI is dealt with in an abstract and presented the applicability of such documentary content of insulation and airtightness, efficient machine. In contrast, the UK has been directly limit the carbon footprint of buildings in the Building Regulations Part L and evaluate them in BREEAM. This analysis of the ways to reduce substantially the energy for domestic green building regulations should be addressed through the feed.

The Effect on Indoor Air Quality Improvement by Ventilation Rate in Newly Built Apartment (환기량 변화에 따른 신축공동주택의 실내공기질 개선효과 검토)

  • Choi Seok-Yong;Kim Sang-Hee;Yee Jung-Jae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.8
    • /
    • pp.649-655
    • /
    • 2006
  • The recent indoor air quality problem in a newly-built apartment house is resulted from the improvement of airtightness performance and the use of the building material contained harmful chemical substances. As a result, these cause indoor air quality gradually to become worse and the harmful effect on occupant health called Sick House Syndrome. The most effective solution to improve the indoor air quality is to encourage the use of green building material. However, if the house is built with general building material, ventilation with outdoor air is alternative to dilute the pollutant concentration. The purpose of this re-search is to find optimum ventilation time in a newly-built apartment house at which the ventilatoris installed. It is found that the HCHO and toluene concentrations are remarkably decreased with the elapse of ventilation time and the concentration reduction rate is increased with increment of air change rate after one hour after operating the ventilator.

Development of Superfinishing Machine to Polish the Inner Surfaces of Aircraft Hydraulic Oil Reservoirs (항공기 유압유 저장조 내면연마를 위한 슈퍼피니싱 장치 개발에 관한 연구)

  • Choi, Su Hyun;Kong, Kwang Ju;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.110-116
    • /
    • 2020
  • Aircraft hydraulic oil reservoirs made with aluminum 7075 have an anodized coating to enable airtightness and corrosion resistance. To maintain a stable oil pressure, the internal surface roughness of the reservoir should be less than approximately 0.2 ㎛. To this end, precision polishing must be performed. However, ensuring the processing quality is challenging, as most polishing operations are performed manually, owing to which, the inner surface roughness is not uniform, and the product quality is irregular. Therefore, we developed a special superfinishing machine to realize the efficient inner polishing of an aircraft hydraulic oil reservoir, by using an abrasive film to improve the process throughput and uniformity. In the experiment involving the superfinishing of an anodized aluminum 7075 cylinder specimen by using the proposed machine, a higher surface roughness than that achieved in the repetitive manual polishing process could be realized.