• Title/Summary/Keyword: Airframe Structure

Search Result 45, Processing Time 0.023 seconds

Development of Superplastic Forming/Diffusion Bonding Technology for Ti-6Al-4V Sandwich Panels (Ti-6Al-4V 샌드위치 패널제작을 위한 초소성/확산접합 기술개발)

  • Lee, Ho-Sung;Yoon, Jong-Hoon;Lee, Seung-Chul;Park, Dong-Kyu;Yi, Yeong-Moo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.123-128
    • /
    • 2008
  • Ti-6Al-4V alloy is a critical strategic metal used in aerospace structure due to the high specific strength, toughness, durability, low density, corrosion resistance. Examples of application of this alloy are airframe structural components, aircraft gas turbine disks and blades. Forming of this alloy is not easy due to its high strength and low formability. However, this alloy shows superplastic properties that allow for large plastic deformation under certain conditions. Combination of superplastic forming and diffusion bonding(SPF/DB) processes of this alloy has been widely used to replace mechanically fastened structures with reduced weight and fabrication costs. In this study, superplastic forming/diffusion bonding technology has been developed for fabricating lightweight sandwich panels with Ti-6Al-4V alloy. The experimental results show the forming of titanium lightweight sandwich structure is successfully performed from 3 and 4 sheets of Ti-6Al-4V.

Study on Fatigue Analysis for the Cutout Panel Structure using the Relation of Max-Min Principal Stress (최대 최소 주응력 관계를 활용한 Cutout Panel 구조물의 피로해석연구)

  • Shin, Insoo;Park, Gyucheul;Moon, Jungwon;Hong, Seunghyun
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.4
    • /
    • pp.31-36
    • /
    • 2015
  • The fatigue analysis for cutout panel used for the weight reduction of aircraft has been conventionally performed through the open hole concept using the reference stress and stress concentration factor (Kt). However, in the actual structure cases, the goal of weight reduction might be less meaningful due to the conservative approach induced by the difficulties of extracting the confident reference stress from FE-Analysis in the complicated loading behavior. Therefore a new approach is proposed in order to secure the effectiveness of weight reduction and validate the confidence of the analysis results using the interaction of max-min principal stress at the critical location of open hole edge line.

Thermo-Mechanical Characteristics of a Plate Structure under Mechanical and Thermal Loading (외력과 열하중을 동시에 받는 판구조의 열-기계적 특성)

  • 김종환;이기범;황철규
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.26-34
    • /
    • 2006
  • The thermo-mechanical analysis and test were performed for plate structure under mechanical and thermal loading conditions. Infrared heating system and hydraulic loading system were used to simulate mechanical and thermal environment for the plate structure which is similar to the fin of the airframe. Also, FEM analysis using plastic option was added to evaluate thermo-mechanical behavior. Thermo-mechanical tests were conducted at elevated temperature and rapid heating(10℃/sec) condition with external loading together. To investigate the effect of heating environment, the strength at room temperature was compared with that of elevated temperature and rapid heating condition. A methodology for test and analysis for supersonic vehicle subjected to aerodynamic loading and heating was generated through the study. These experimental and analysis results can be used for designing thermal resistance structures of the supersonic vehicle.

Development of Main Wing Structure of Long Endurance Electric Powered UAV (24시간 장기체공 전기 동력 무인항공기 주익 구조 개발)

  • Park, Sang Wook;Shin, Jeong Woo;Park, Ill Kyung;Lee, Mu-Hyoung;Woo, Dae Hyun;Kim, Sung Joon;Ahn, Seok Min
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • In order to increase endurance flight efficiency of long endurance electric powered UAV with solar cell, the light weight airframe design techniques are important. In this paper, the design of the main wing of electric powered UAV manufactured using Mylar film and fiber reinforced composite was conducted in order to achieve weight reduction and structural integrity of the structure. The shape of spar and size were determined using beam theory analysis. The finite element analysis of the wing was performed under various load condition derived from flight environment of EAV-2H. Finally, the static strength test of the main wing was conducted to verify structural integrity. It was found that the developed main wing weigh less than 42% than the previous EAV-2 and the main wing passed static strength test under ultimate load.

A Study on the Elevator Spar Improvement for the Operating Aircraft (장기 운영항공기 승강타 날개보 구조개선 연구)

  • Shim, Daisung;Kim, Mantae;Yeom, Hyowon;Im, Dongmin;Kim, Youngjin;Uhm, Wonseop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.675-680
    • /
    • 2016
  • This is a study for the improvement of the defected elevator spar in operating aircraft. The elevator spar web holes were analyzed to find out the cause of the cracks. The fatigue striations were observed and the cracks occurred by the repetitive stresses during the elevator works. Also the outboard connection structure of the elevator and horizontal stabilizer was more weak shape than the inboard. The design changes were recommended and the analyses were performed to verify the improvement of the changed shapes.

A Study on the Static Test of Rudder Control System for a Basic Trainer (기본훈련기 방향타 조종장치 정적하중 시험에 관한 연구)

  • Jeon, Chan-Won;Lee, Su-Yong;Gang, Gyu-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.115-121
    • /
    • 2002
  • This report summarized the static test of the rudder system for the KTX-1 basic trainer. The test loads are applied up to the limit and ultimate loads in a stepping sequence. Test loads and test results matt the strength and stiffness requirements of the rudder control system.. Using #004 full scale structure test airframe.

The Tensile Characteristics of Carbon and Silica Reinforced Composites Under Elevated Temperature (카본 및 실리카 강화 복합재료의 고온 인장 특성 평가)

  • 김종환;김재훈
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.49-57
    • /
    • 2003
  • This paper presents the tensile characteristics for carbon/epoxy, carbon/phenolic and silica/phenolic composites under elevated temperature, which are considered for vehicle structure or thermal protection materials. The tensile test was conducted with servo-hydraulic testing machine and high temperature furnace, and the mechanical properties such as tensile strength, elastic modulus and Poisson's ratio were evaluated by using high temperature strain gages. Also, they were compared each other with respect to fiber orientation and temperature effect. These test results were used for designing and analyzing some airframe structures with these composites.

Analysis of EM Penetration Problems in Complex Structures Using Finite-Difference Time-Domain Method (FDTD 방법을 이용한 복잡한 구조물에서의 전자파 침투 특성 해석)

  • 김병남;채찬병;박성욱;이형수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.1
    • /
    • pp.68-75
    • /
    • 2000
  • In this paper, we analyzed the radiation patterns of a monopole antenna mounted on cylinder and EM penetration problems in the complex structures by using FDTD method associated with 3-D PML absorbing boundary condition. In order to validate the proposed FDTD code, the radiation patterns of monopole antenna mounted on cylinders were compared with the exact Carter's solutions. As a results, the predicted radiation pattern exhibited excellent agreement with exact solution. And the FDTD code is applied to analyze the EM penetration problems in complex structures, Blackhawk helicopter. As the plane wave is excited, a significant amount of energy penetrates the helicopter structure, and it is dependent on aperture/airframe interface.

  • PDF

Measurement of Dynamic Strains on Composite T-Joint Subjected to Hydrodynamic Ram Using PVDF Sensors (PVDF 센서를 이용한 수압램 하중을 받는 복합재 T-Joint의 동적 변형률 측정)

  • Go, Eun-Su;Kim, Dong-Geon;Kim, In-Gul;Woo, Kyeongsik;Kim, Jong-Heon
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.238-245
    • /
    • 2018
  • The hydrodynamic ram (HRAM) phenomenon is one of the main types of ballistic battle damages of a military aircraft and has great importance to airframe survivability design. The HRAM effect occurs due to the interaction between the fluid and structure, and damage can be investigated by measuring the pressure of the fluid and the dynamic strains on the structure. In this paper, HRAM test of a composite T-Joint was performed using a ram simulator which can generate HRAM pressure. In addition, calibration tests of PVDF sensor were performed to determine the circuit capacitance and time constant of the measurement system. The failure behavior of the composite T-Joint due to HRAM pressure was examined using the strain gauges and a PVDF sensor which were attached to the surface of the composite T-Joint.

Improvement of Heat of Reaction of Jet Fuel Using Pore Structure Controlled Zeolite Catalyst (제올라이트계 촉매의 기공구조 조절을 통한 항공유의 흡열량 향상 연구)

  • Hyeon, Dong Hun;Kim, Joongyeon;Chun, Byung-Hee;Kim, Sung Hyun;Jeong, Byung-Hun;Han, Jeong Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.95-100
    • /
    • 2014
  • In hypersonic aircraft, increase of aerodynamic heat and engine heat leads heat loads in airframe. It could lead structural change of aircraft's component and malfunctioning. Endothermic fuels are liquid hydrocarbon fuels which are able to absorb the heat load by undergoing endothermic reactions. In this study, exo-tetrahydrodicyclopentadiene was selected as a model endothermic fuel and experiments on endothermic properties were investigated with pore structure controlled zeolite catalyst using metal deposition. We secured the catalyst that had better endothermic performance than commercial catalyst. The object of this study is inspect catalyst properties which have effect on heat absorption improvement. Synthetic catalyst could be applied to system that use exo-THDCP as endothermic fuel instead of other commercial catalyst.