• Title/Summary/Keyword: Airfoil section

Search Result 77, Processing Time 0.024 seconds

Study on Performance Improvement of an Axial Flow Hydraulic Turbine with a Collection Device

  • Nishi, Yasuyuki;Inagaki, Terumi;Li, Yanrong;Hirama, Sou;Kikuchi, Norio
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.47-55
    • /
    • 2016
  • The portable hydraulic turbine we previously developed for open channels comprises an axial flow runner with an appended collection device and a diffuser section. The output power of this hydraulic turbine was improved by catching and accelerating an open-channel water flow using the kinetic energy of the water. This study aimed to further improve the performance of the hydraulic turbine. Using numerical analysis, we examined the performances and flow fields of a single runner and a composite body consisting of the runner and collection device by varying the airfoil and number of blades. Consequently, the maximum values of input power coefficient of the Runner D composite body with two blades (which adopts the MEL031 airfoil and alters the blade angle) are equivalent to those of the composite body with two blades (MEL021 airfoil). We found that the Runner D composite body has the highest turbine efficiency and thus the largest power coefficient. Furthermore, the performance of the Runner D composite body calculated from the numerical analysis was verified experimentally in an open-channel water flow test.

Computations of Droplet Impingement on Airfoils in Two-Phase Flow

  • Kim, Sang-Dug;Song, Dong-Joo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2312-2320
    • /
    • 2005
  • The aerodynamic effects of leading-edge accretion can raise important safety concerns since the formulation of ice causes severe degradation in aerodynamic performance as compared with the clean airfoil. The objective of this study is to develop a numerical simulation strategy for predicting the particle trajectory around an MS-0317 airfoil in the test section of the NASA Glenn Icing Research Tunnel and to investigate the impingement characteristics of droplets on the airfoil surface. In particular, predictions of the mean velocity and turbulence diffusion using turbulent flow solver and Continuous Random Walk method were desired throughout this flow domain in order to investigate droplet dispersion. The collection efficiency distributions over the airfoil surface in simulations with different numbers of droplets, various integration time-steps and particle sizes were compared with experimental data. The large droplet impingement data indicated the trends in impingement characteristics with respect to particle size ; the maximum collection efficiency located at the upper surface near the leading edge, and the maximum value and total collection efficiency were increased as the particle size was increased. The extent of the area impinged on by particles also increased with the increment of the particle size, which is similar as compared with experimental data.

Study on Vibration Characteristics in Terms of Airfoil Cross-Sectional Shape by using Co-Rotational Plane Beam Transient Analysis (Co-Rotational 보의 과도상태해석을 이용한 에어포일 단면 형상 변화에 따른 진동특성 연구)

  • Kim, Se-Ill;Kim, Yong-Se;Park, Chul-Woo;Shin, Sang Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.389-395
    • /
    • 2016
  • In this paper, vibration characteristics in terms of the airfoil cross-sectional shape was examined by using the EDISON co-rotational plane beam-transient analysis. Co-Rotational plane beam analysis is appropriate for large rotation and small strain. Assuming aircraft wing as a cantilevered beam, natural frequencies of each airfoil cross-sectional shape were estimated using VABS program and fast Fourier transformation(FFT). VABS conducts finite element analysis on the cross-section including the detailed geometry and material distribution to estimate the beam sectional properties. Under the same airfoil geometric configuration and material selection, variation of material induced difference in the deflection and natural frequencies. It was observed that variation of the natural frequency was dependent on variation of the airfoil shape and material.

An Experimental Study on Transonic Airfoil Flows in a Shock Tube (충격파관 내 천음속 날개 유동에 관한 실험적 연구)

  • Lee, Dong-Won;Gwon, Sun-Beom;;Kim, Byeong-Ji;Kim, Tae-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.11-16
    • /
    • 2006
  • An experimental study of the transonic flows over NACA and double wedge airfoils was conducted with a shock tube. The configuration of test section with a slotted wall and chamber was designed and tested to minimize wall and reflected shock wave effects and use the shock tube as simple and less costly wind tunnel generating the relatively high Reynolds numbers transonic flow. Transonic airfoil flows at hot gas Mach numbers of 0.80~0.84, Reynolds number of about $1.2{\times}10^6$ on airfoil chord length and angles of attack of $0^{\circ}$ and $2^{\circ}$ were visualized with the shadowgraph method. The shock wave profiles on the airfoils were compared with the corresponding results from the conventional transonic wind tunnel tests. The experimental results showed that present shock tube exhibited the proper performance characteristics as transonic wind tunnel for tested Mach number range and airfoils.

Prediction of aerodynamic force coefficients and flow fields of airfoils using CNN and Encoder-Decoder models (합성곱 신경망과 인코더-디코더 모델들을 이용한 익형의 유체력 계수와 유동장 예측)

  • Janghoon, Seo;Hyun Sik, Yoon;Min Il, Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.94-101
    • /
    • 2022
  • The evaluation of the drag and lift as the aerodynamic performance of airfoils is essential. In addition, the analysis of the velocity and pressure fields is needed to support the physical mechanism of the force coefficients of the airfoil. Thus, the present study aims at establishing two different deep learning models to predict force coefficients and flow fields of the airfoil. One is the convolutional neural network (CNN) model to predict drag and lift coefficients of airfoil. Another is the Encoder-Decoder (ED) model to predict pressure distribution and velocity vector field. The images of airfoil section are applied as the input data of both models. Thus, the computational fluid dynamics (CFD) is adopted to form the dataset to training and test of both CNN models. The models are established by the convergence performance for the various hyperparameters. The prediction capability of the established CNN model and ED model is evaluated for the various NACA sections by comparing the true results obtained by the CFD, resulting in the high accurate prediction. It is noted that the predicted results near the leading edge, where the velocity has sharp gradient, reveal relatively lower accuracies. Therefore, the more and high resolved dataset are required to improve the highly nonlinear flow fields.

A Study on Numerical Optimization Method for Aerodynamic Design (공력설계를 위한 수치최적설계기법의 연구)

  • Jin, Xue-Song;Choi, Jae-Ho;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.29-34
    • /
    • 1999
  • To develop the efficient numerical optimization method for the design of an airfoil, an evaluation of various methods coupled with two-dimensional Naviev-Stokes analysis is presented. Simplex method and Hook-Jeeves method we used as direct search methods, and steepest descent method, conjugate gradient method and DFP method are used as indirect search methods and are tested to determine the search direction. To determine the moving distance, the golden section method and cubic interpolation method are tested. The finite volume method is used to discretize two-dimensional Navier-Stokes equations, and SIMPLEC algorithm is used for a velocity-pressure correction method. For the optimal design of two-dimensional airfoil, maximum thickness, maximum ordinate of camber line and chordwise position of maximum ordinate are chosen as design variables, and the ratio of drag coefficient to lift coefficient is selected as an objective function. From the results, it is found that conjugate gradient method and cubic interpolation method are the most efficient for the determination of search direction and the moving distance, respectively.

  • PDF

Design and demonstrators testing of adaptive airfoils and hingeless wings actuated by shape memory alloy wires

  • Mirone, Giuseppe
    • Smart Structures and Systems
    • /
    • v.3 no.1
    • /
    • pp.89-114
    • /
    • 2007
  • Two aspects of the design of a small-scale smart wing are addressed in this work, related to the ability of the wing to modify its cross section assuming the shape of two different airfoils and to the possibility of deflecting the profiles near the trailing edge in order to obtain hingeless control surfaces. The actuation is provided by one-way shape memory alloy wires eventually coupled to springs, Shape Memory Alloys (SMAs) being among the most promising materials for this kind of applications. The points to be actuated along the profiles and the displacements to be imposed are selecetd so that they satisfactorily approximate the change from an airfoil to the other and to result in an adequate deflection of the control surface; the actuators and their performances are designed so that an adequate wing stiffness is guaranteed, in order to prevent excessive deformations and undesired airfoil shape variations due to aerodynamic loads. The effect of the pressure distributions, calculated by way of the XFOIL software, and of the actuators loads, is estimated by FE analyses of the loaded wing. Two prototypes are then realised incorporating the variable airfoil and the hingeless aileron features respectively, and the verification of their shapes in both the actuated and non-actuated states, supported by image analysis techniques, confirms that interesting results are achievable with the proposed lay out and design considerations.

Numerical Analysis of Aerodynamics Characteristics of Two Dimensional Airfoil Section with Elastic Flap (탄성 플랩을 갖는 2차원 날개 단면 공력 특성 전산해석)

  • Won, Chang-Hee;Lee, Joo-Yong;Lee, Sungsu
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.1
    • /
    • pp.39-46
    • /
    • 2014
  • This study presents computational analysis of aerodynamic characteristics of two-dimensional airfoil sections with elastic flap attached at the trailing edge. EDISON_CFD was utilized to simulate the incompressible turbulent flow around the foil and MIDAS_IT was employed to estimate the deflection of the flap under the pressure loading. Using iterative procedure, the terminal deflection was estimated and the resulting lift-drag ratio indicates that the favorable effect of the flap is expected within certain amount of angle of attack.

Aerodynamic characteristics of NACA 4412 airfoil section with flap in extreme ground effect

  • Ockfen, Alex E.;Matveev, Konstantin I.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 2009
  • Wing-in-Ground vehicles and aerodynamically assisted boats take advantage of increased lift and reduced drag of wing sections in the ground proximity. At relatively low speeds or heavy payloads of these craft, a flap at the wing trailing-edge can be applied to boost the aerodynamic lift. The influence of a flap on the two-dimensional NACA 4412 airfoil in viscous ground-effect flow is numerically investigated in this study. The computational method consists of a steady-state, incompressible, finite volume method utilizing the Spalart-Allmaras turbulence model. Grid generation and solution of the Navier-Stokes equations are completed using computer program Fluent. The code is validated against published experimental and numerical results of unbounded flow with a flap, as well as ground-effect motion without a flap. Aerodynamic forces are calculated, and the effects of angle of attack, Reynolds number, ground height, and flap deflection are presented for a split and plain flap. Changes in the flow introduced with the flap addition are also discussed. Overall, the use of a flap on wings with small attack angles is found to be beneficial for small flap deflections up to 5% of the chord, where the contribution of lift augmentation exceeds the drag increase, yielding an augmented lift-to-drag ratio.

Airfoil Testing to Obtain Full-range Aerodynamic Characteristics based on Velocity Field Measurements Utilizing a Digital Wind Tunnel (익형의 전 범위 받음각에서 공력특성 시험이 가능한 디지털 풍동의 개발 및 속도장 측정)

  • Kang, Sangkyun;Kim, Jin-Ok;Kim, Yong-Su;Shin, Won-Sik;Lee, Sang-Il;Lee, Jang-Ho
    • New & Renewable Energy
    • /
    • v.18 no.3
    • /
    • pp.60-71
    • /
    • 2022
  • A wind tunnel provides artificial airflow around a model throughout the test section for investigating aerodynamic loads. It has various applications, which include demonstration of aerodynamic loads in the building, automobile, wind energy, and aircraft industries. However, owing to the high equipment costs and space-requirements of wind tunnels, it is challenging for numerous studies to utilize a wind tunnel. Therefore, a digital wind tunnel can be utilized as an alternative for experimental research because it occupies a significantly smaller space and is easily operable. In this study, we performed airfoil testing based on velocity field measurements utilizing a digital wind tunnel. This wind tunnel can potentially be utilized to test the full-range aerodynamic characteristics of airfoils.