• Title/Summary/Keyword: Airfoil Test

Search Result 96, Processing Time 0.024 seconds

Experimental Study on Aerodynamic Characteristics of Morphing Airfoil Configuration (모핑 에어포일 형상의 공력특성 실험연구)

  • Ko, Seung-Hee;Bae, Jae-Sung;Kim, Hark-Bong;Roh, Jin-Ho;Ahn, Seok-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.10
    • /
    • pp.846-852
    • /
    • 2012
  • The present paper is the preliminary study of the development of a morphing aircraft wing and investigates experimently the aerodynamic characteristics of a base airfoil and a morphing airfoil. The wind tunnel tests are conducted for a base Clark-Y airfoil, an airfoil with a mechanical flap, and a morphing airfoil. Lifts, drags, and pitching moments are measured by using a three-axis load cell and they are calibrated by considering solid blockage and wake blockage. The wind tunnel tests are conducted for various air speeds, Reynolds' numbers, and angles of attack. The experimental results show that the aerodynamic characteristics of the morphing airfoil in lift-drag and lift-pitching moment are better than those of the airfoil with a mechanical flap.

Design and Wind Tunnel Tests of a Natural Laminar Flow Airfoil (자연층류 익형 설계 및 시험)

  • Lee, Yung-Gyo;Kim, Cheol-Wan;Shim, Jae-Yeul;Kim, Eung-Tae;Lee, Dae-Sung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.354-357
    • /
    • 2008
  • Drag reduction is one of main concerns for commercial aircraft companies than ever because fuel price has been tripled in ten years. In this research, Natural Laminar Flow airfoil is designed and tested to reduce drag at cruise condition, $c_l$=0.3, Re=3.4${\times}$10$^6$ and M=0.6. NLF airfoil is characterized by delayed transition from laminar to turbulent flow, which comes from maintaining favorable pressure gradient to downstream. Transition is predicted by solving Boundary Layer equations in viscous boundary layer and by solving Euler Equation outside the boundary layer. Once boundary layer thickness and momentum thickness are obtained, $e^N$-method is used for transition point prediction. As results, KARI's NLF airfoil is designed and shows better characteristics than NLF-0115. The characteristics are tested and verified at low Reynolds numbers, but at high Reynolds numbers, laminar flow characteristics are not obtainable because of fully turbulent flow over airfoil surfaces. Precious experiences, however, relating NLF airfoil design, subsonic and transonic tests are acquired.

  • PDF

Deep learning-based Approach for Prediction of Airfoil Aerodynamic Performance (에어포일 공력 성능 예측을 위한 딥러닝 기반 방법론 연구)

  • Cheon, Seongwoo;Jeong, Hojin;Park, Mingyu;Jeong, Inho;Cho, Haeseong;Ki, Youngjung
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.17-27
    • /
    • 2022
  • In this study, a deep learning-based network that can predict the aerodynamic characteristics of airfoils was designed, and the feasibility of the proposed network was confirmed by applying aerodynamic data generated by Xfoil. The prediction of aerodynamic characteristics according to the variation of airfoil thickness was performed. Considering the angle of attack, the coordinate data of an airfoil is converted into image data using signed distance function. Additionally, the distribution of the pressure coefficient on airfoil is expressed as reduced data via proper orthogonal decomposition, and it was used as the output of the proposed network. The test data were constructed to evaluate the interpolation and extrapolation performance of the proposed network. As a result, the coefficients of determination of the lift coefficient and moment coefficient were confirmed, and it was found that the proposed network shows benign performance for the interpolation test data, when compared to that of the extrapolation test data.

CFD ANALYSIS OF SUBSONIC AIRFOIL WIND TUNNEL TEST (아음속 익형 풍동시험 전산해석)

  • Kim, C.W.;Lee, Y.G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.167-170
    • /
    • 2007
  • In the present paper, wall correction method is reviewed and applied to the numerical experimental results obtained at the wind tunnel condition. The corrected lift coefficient agrees well with the reference data generated from the grid having very far boundary. However the corrected drag coefficient presents some deviation from the reference data.

  • PDF

Introduction to the NREL Design Codes for System Performance Test of Wind Turbines - Part I : Preprocessor (풍력터빈 시스템 성능평가를 위한 NREL 프로그램군에 관한 소개 - 전처리기를 중심으로)

  • Bang, Je-Sung;Rim, Chae Whan;Chung, Tae Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.41.2-41.2
    • /
    • 2011
  • NREL NWTC Deside codes are analyzed and introduced to develop the system performance simulation program for wind turbine generator systems. In this paper, The AirfoilPrep generating the airfoil data, the IECWind generating hub-height wind data with extreme condition following IEC 61400-1, the TurbSim generating stochastic full-field turbulent wind data, the PreComp calculating structural and dynamic properties of composite blade and the BModes making mode shapes of blade and tower are explained respectively.

  • PDF

Numerical Study of the Aerodynamic Characteristics of an Airfoil with Thickness Uncertainty for a Wind Tunnel Testing (두께의 불확실성을 갖는 풍동시험 익형모델의 공력특성에 관한 수치해석 연구)

  • Yi, Tae-Hyeong;Kwon, Ki-Jung;Kim, Keun-Taek;Ahn, Seok-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.475-484
    • /
    • 2012
  • Numerical investigation is performed to understand the effects of thickness uncertainty of a supporting airfoil due to manufacturing processes on the aerodynamic characteristics of an airfoil used for measuring data in a wind tunnel testing. This is done by comparing the coefficients of lift, drag and moment of the airfoils. In this work, the airfoil model consists of three parts, one located in the center for measuring and two outer parts used for supporting. The study is carried out with a NACA64-418 airfoil and the turbulence model of Transition SST. It is found that the effect of thickness uncertainty of the airfoils used for supporting is not significant to the performance of the test airfoil at various angles of attack and Reynolds numbers.

Airfoil Testing to Obtain Full-range Aerodynamic Characteristics based on Velocity Field Measurements Utilizing a Digital Wind Tunnel (익형의 전 범위 받음각에서 공력특성 시험이 가능한 디지털 풍동의 개발 및 속도장 측정)

  • Kang, Sangkyun;Kim, Jin-Ok;Kim, Yong-Su;Shin, Won-Sik;Lee, Sang-Il;Lee, Jang-Ho
    • New & Renewable Energy
    • /
    • v.18 no.3
    • /
    • pp.60-71
    • /
    • 2022
  • A wind tunnel provides artificial airflow around a model throughout the test section for investigating aerodynamic loads. It has various applications, which include demonstration of aerodynamic loads in the building, automobile, wind energy, and aircraft industries. However, owing to the high equipment costs and space-requirements of wind tunnels, it is challenging for numerous studies to utilize a wind tunnel. Therefore, a digital wind tunnel can be utilized as an alternative for experimental research because it occupies a significantly smaller space and is easily operable. In this study, we performed airfoil testing based on velocity field measurements utilizing a digital wind tunnel. This wind tunnel can potentially be utilized to test the full-range aerodynamic characteristics of airfoils.

An Experimental Study of the Near-Wake Characteristics of an Oscillating Elliptic Airfoil (진동하는 타원형 에어포일의 근접후류 특성 연구)

  • Chang, Jo-Won;Shon, Myong-Hwan;Eun, Hee-Bong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1795-1800
    • /
    • 2003
  • An experimental study was carried out to investigate near-wake characteristics of an elliptic airfoil oscillating in pitch. The airfoil was sinusoidally pitched about the half chord point between $-5^{\circ}C$ and $+25^{\circ}C$ angles of attack at the freestream velocities of 3.4 and 23.1 m/s The corresponding Reynolds numbers based on the chord length were $3.3{\times}10^4$ and $2.2{\times}10^5$, respectively. A hot-wire anemometer was used to measure the near-wake flow variable at the reduced frequency of 0.1. Ensemble-averaged velocity and turbulence intensity profile were presented to examine the near-wake characteristics depending on the Reynolds number. The axial velocity deficit in the near-wake region tend to decrease with the increase in the Reynolds number a found in many stationary airfoil test . Turbulence intensity in the near-wake region have a tendency to decrease with the increase in the Reynolds number during the pitch-up motion, whereas it shows different feature during the pitch-down motion either the laminar boundary layer or turbulent boundary layer separation.

  • PDF

Design of Morphing Airfoil Using Shape Memory Alloy Actuator (형상기억합금 작동기를 이용한 모핑 에어포일 설계)

  • Noh, Mi-Rae;Koo, Kyo-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.7
    • /
    • pp.562-567
    • /
    • 2016
  • Morphing wing which has a configuration optimized to flight speed and condition is faced to a lot of barriers to be overcome such as actuator technique, structural mechanization technique, flexible skin material, control law, and so on. As the first step for developing a morphing wing with rapid response, we designed and fabricated the morphing airfoil using a SMA(shape memory alloy) wire actuator and torsional bias springs. The design concept of the morphing airfoil was verified through operation test. The measured results show that the flap deflects smoothly and fast.

Study on Performance Improvement of an Axial Flow Hydraulic Turbine with a Collection Device

  • Nishi, Yasuyuki;Inagaki, Terumi;Li, Yanrong;Hirama, Sou;Kikuchi, Norio
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.47-55
    • /
    • 2016
  • The portable hydraulic turbine we previously developed for open channels comprises an axial flow runner with an appended collection device and a diffuser section. The output power of this hydraulic turbine was improved by catching and accelerating an open-channel water flow using the kinetic energy of the water. This study aimed to further improve the performance of the hydraulic turbine. Using numerical analysis, we examined the performances and flow fields of a single runner and a composite body consisting of the runner and collection device by varying the airfoil and number of blades. Consequently, the maximum values of input power coefficient of the Runner D composite body with two blades (which adopts the MEL031 airfoil and alters the blade angle) are equivalent to those of the composite body with two blades (MEL021 airfoil). We found that the Runner D composite body has the highest turbine efficiency and thus the largest power coefficient. Furthermore, the performance of the Runner D composite body calculated from the numerical analysis was verified experimentally in an open-channel water flow test.