• Title/Summary/Keyword: Airflow model

Search Result 196, Processing Time 0.026 seconds

Development of a Theoretical Model for Predicting Contaminant Concentrations in a Multi-zone Work Environment (다구획 작업환경에서의 오염농도 예측을 위한 이론적 모델의 개발)

  • Cho, Seok-Ho
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.21 no.4
    • /
    • pp.185-192
    • /
    • 2011
  • To predict contaminant concentrations within a multi-zone work environment, an air quality model in the work environment was developed. To do this, airflow equations on the basis of orifice equation were solved by using the Conte and De Boor scheme, and then equations for the conservation of mass on contaminant were solved by using the fourth-order Runge-Kutta algorithm. To validate the accuracy of simulated results, this model was applied to the controlled environment chamber that had been tested in 1998 by Chung KC. The comparison of predicted concentrations by this study with measured concentrations by the Chung KC indicated that the average deviations were 2.66, 3.35, and 3.15% for zone 1, zone 2, and zone 3, respectively. Also, this model was applied to a working plant with four zones. Thus, the results of contaminant concentration versus time were predicted according to the schedule of the openings operation, and case studies were done for four cases of the openings operation to investigate the interaction of airflow and contaminant concentration. The results indicated that opening operation schedules had a significant effect on contaminant removal efficiency. Therefore, this model might be able to apply for the design of ventilation schedules to control contaminants optimally.

Effects of Soil and Air Flow Characteristics on the Soil-Air Heat Exchanger Performances (토양과 공기유동특성이 토양-공기 열교환기 성능에 미치는 영향)

  • 김영복;김기영
    • Journal of Biosystems Engineering
    • /
    • v.23 no.1
    • /
    • pp.21-30
    • /
    • 1998
  • A theoretical model was developed to evaluate the effects of soil and airflow characteristics on the soil-air heat exchanger performances. The model, which includes three-dimensional transient energy and mass equilibrium-equation, was solved by using a computer program that uses Finite Difference Methods and Gauss-Seidel iteration computation. Energy gains, heat exchange efficiencies, and outlet air temperature are presented including the effects of soil moisture content, soil conductivity, soil thermal diffusivity, and soil initial temperature. Also, data related to the effects of airflow rate and inlet air temperature on the thermal performance of the system are presented. The results indicated that energy gains depend on soil conductivity, soil thermal diffusivity, and soil initial temperature. Heat exchange efficiencies relied on air mass flow rate and soil moisture content.

  • PDF

Numerical Study on a Model Scramjet Engine with a Backward Step (후방단이 있는 모델 초음속연소기의 연소수치해석)

  • Moon, Guee-Won;Jeong, Eun-Ju;Lee, Byeong-Ro;Jeung, In-Seuck;Choi, Jeong-Yeol
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.3
    • /
    • pp.32-36
    • /
    • 2002
  • A numerical study was carried out to investigate combustion phenomena in a model Scramjet engine, which had been experimentally studied at the University of Tokyo using a high-enthalpy supersonic wind tunnel. The main airflow was Mach number 2.0 and the total temperature of hot flow was 1800K. Equivalence ratio was set to be 0.26 which is higher than that of experiment to investigate the effect of strong precombustion shock. The results showed that self-ignition occurred at the rear bottom wall of the combustor and combined with the shear layer flame between fuel jet and main airflow. Then, precombustion shock was generated at the step location and reversely enhanced the mixing and combustion process behind the shock. Due to the high equivalence ratio, the precombustion shock moved upstream of the step compared with that of experiment.

  • PDF

Numerical Study on a Model Scramjet Engine with a Backward Step (후방단이 있는 모델 초음속연소기의 연소수치해석)

  • Moon, G.W.;Jeung, I.S.;Jeong, E.J.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.127-132
    • /
    • 2001
  • A numerical study was carried out to investigate the combustion phenomena in a model Scramjet engine, which had been experimentally studied in the University of Tokyo using a high-enthalpy supersonic wind tunnel. The main airflow was 2.0 in Mach number and the total temperature of hot flow was 1800K. Equivalence ratio was set to be rather higher value of 0.26 than that of experiment to investigate the effect of strong precombustion shock. The results showed that self-ignition occurred at the rear bottom wall of the combustor and combined with the shear layer flame between fuel jet and main airflow. Then, precombustion shock was generated at the step location and reversely enhanced the mixing and combustion process behind the shock. Due to the high equivalence ratio, the precombustion shock moved upstream of the step compared with that of experiment.

  • PDF

Simulation of the Stack Effect in High-Rise Builbings (고층건물에서의 연돌효과 시뮬레이션)

  • 양인호;여명석;조재훈;김광우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.6
    • /
    • pp.456-467
    • /
    • 2002
  • The objective of this study is to analyze and evaluate the impact of the stack effect in high-rise buildings for solving the various problems resulting from it. For the evaluation of the impact of the stack effect, computer program simulations based on the network model were performed for a typical high-rise office building. The results of the simulations show that the impact caused by the stack effect is mainly dependent on building envelope air-tightness and internal airflow resistance, so the problems due to the stack effect may be solved to some extent by installing vestibules around entrance doors and doors serving elevators, and by zoning the elevators.

Motion behavior research of liquid micro-particles filtration at various locations in a rotational flow field

  • Yan, Yan;Lin, Yuanzai;Cheng, Jie;Ni, Zhonghua
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.163-170
    • /
    • 2017
  • This study presents a particle-wall filtration model for predicting the particle motion behavior in a typical rotational flow field-filtration in blower system of cooker hood. Based on computational fluid dynamics model, air flow and particles has been simulated by Lagrangian-particle/ Eulerian-gas approaches and get verified by experiment data from a manufacturer. Airflow volume, particle diameter and local structure, which are related to the particle filtration has been studied. Results indicates that: (1) there exists an optimal airflow volume of $1243m^3/h$ related to the most appropriate filtration rate; (2) Diameter of particle is the significant property related to the filtration rate. Big size particles can represent the filtration performance of blower; (3) More than 86% grease particles are caught by impeller blades firstly, and then splashed onto the corresponding location of worm box internal wall. These results would help to study the micro-particle motion behavior and evaluate the filtration rate and structure design of blower.

Prediction of Airflow and Temperature Field in a Room With Convective Heat Source (열원이 존재하는 작업장내 기류 및 온도장 예측)

  • Jung, Yu-Jin;Ha, Hyun-Chul;Kim, Tae-Hyeung;Yoo, Guen-Jong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.1
    • /
    • pp.78-84
    • /
    • 2001
  • A CFD simulation of airflow and temperature field in a heated room has been described in this paper. The thermal wall jet created by a radiator greatly influences the airflow pattern, temperature distribution. The area close La a heat source has a higher risk of air-borne contamination and imposes a harmful effect on occupants in that area. The predicted flow field, temperature results show good agreement with the measured data. As the results were compared with experimental data, the applicability of CFD was satisfactorily verified. Also, the CFD simulation can capture the natural convective flow features. If a CFD simulation is applied ventilation design with a heat source, An effective design will be attained. Further study is required to improve the accuracy of CFD simulation.

  • PDF

A Study on the Validation of Phonation Threshold Power and the Clinical Usefulness of PTW: A Preliminary Study (발성역치능력(Phonation Threshold Power, PTW)의 타당도 및 임상적 유용성 연구: 예비연구)

  • Hwang, Youngjin;Lee, Inae
    • Phonetics and Speech Sciences
    • /
    • v.6 no.2
    • /
    • pp.133-138
    • /
    • 2014
  • This study attempted to investigate the validation of Phonation Threshold Power of Patients who have Functional voice disorder. 50 subjects participated in the study (32 subjects were patients who had functional voice disorders and 20 subjects were normal adults). The PAS (Phonatory aerodynamic system, model 6600, KAY electronics, Inc.) was used to measure the data and to do the analysis. Data from the Phonation Threshold Power was measured multiplying Phonation Threshold Pressure and Phonation Threshold Airflow. Phonation Threshold Pressure and Phonation Threshold Airflow were measured by the PAS protocol. Those were used because of the ease of phonation. The results of this study showed that the differences in Phonation Threshold Power between patients who had functional voice disorder and normal adults could become a significant index. Patients who had functional voice disorder showed more higher figures than normal adults. The results of study showed that Phonation threshold Power is more sensitive than Phonation Threshold Pressure and Phonation Threshold Airflow. The measured data also provided useful information for diagnosing patients with vocal fold.

A Numerical Study on Air Distribution and Flow in the Passenger Cabin of a High-Speed Electric Train (고속전철 객실의 공기 분배 및 기류에 관한 수치해석적 연구)

  • Myong, Hyon-Kook;Yoo, Kyung-Hoon;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.15 no.1
    • /
    • pp.27-36
    • /
    • 2019
  • Numerical analysis has been conducted on three-dimensional airflow distribution in the passenger cabin of a high-speed electric train. The types of air distribution systems investigated in the present study were those of TGV and Shinkansen. The Reynolds-averaged Navier-Stokes equations governing the mass and momentum conservations of the airflow in the cabin were solved by using a finite volume method, which are coupled with the standard $k-{\varepsilon}$ turbulence model equations. Predicted velocity distributions were presented on several selected planes in the passenger cabin. The present three-dimensional simulations were found to show the overall features of the airflow in the passenger cabin fairly well. In particular, it was shown that the type of air distribution for Shinkansen was more suitable for a non-smoking cabin than that for TGV.

The Comparison of Aerodynamic Measures in Korean Stop Consonants based on Phonation Types (한국어 파열음의 발성 유형에 따른 공기역학 측정치 비교)

  • Choi, Seong Hee;Choi, Chul-Hee
    • Phonetics and Speech Sciences
    • /
    • v.6 no.4
    • /
    • pp.195-203
    • /
    • 2014
  • The aim of this study was to investigate the effects of phonation types ([+/- aspirated], [+/- fortis]) on aerodynamic measures with Korean bilabial stops. Sixty-three healthy young adults (30 males, 33 females) participated to evaluate the VOEF (Voicing Efficiency) tasks with bilabial stop consonants /$p^h$/, /p/, /p'/ using Phonatory Aerodynamic System (PAS) Model 6600 (Kay PENTAX Corp, Lincoln Park, NJ). All VOEF measures were significantly influenced by phonation types except RANP(pitch range)(p <.01). For sound pressure, maximum SPL, mean SPL, and Mean SPL during Voicing have been shown to be significantly greatest in fortis stop /p'/ than aspirated /$p^h$/ and lenis stop /p/ (p<.001). On the other hand, mean pitch after lenis stop was significantly lower than after aspirated and fortis stops (p<.001). Peak expiratory airflow, Target airflow, and FVC (Expiratory volume) were significantly lowest in fortis stop /p'/ which might be associated with higher aerodynamic resistance while peak air pressure and mean peak air pressure during closure were significantly lower in lenis stop /p/. Additionally, AEFF (Aerodynamic efficiency) was significantly higher in fortis stop /p'/ than lenis stop /p/ as well as aspirated stop /$p^h$/ (p<.001). Thus, sound pressure, airflow parameters, and aerodynamic resistance made crucial roles in distinguishing fortis /p'/ from lenis stop /p/ and aspirated. Additionally, pitch and subglottal air pressure parameters were important aerodynamic characteristics in distinguishing lenis /p/ from fortis /p'/ and aspirated /$p^h$/. Therefore, accurate aspirated /p/ stop consonant should be elicited when collecting the airflow, intraoral pressure related data with patients with voice disorders in order to enhance the reliability and relevance or validity of aerodynamic measures using PAS.