• Title/Summary/Keyword: Aircraft component

Search Result 181, Processing Time 0.026 seconds

Study on Installed Performance Simulation of Aircraft Gas-Turbine Engine Considering Inlet and Exhaust Losses (흡배기구 손실예측 및 이를 고려한 항공기 가스터빈의 장착 성능모사 연구)

  • Kong, Chang-Duk;Owino, George.Omollo.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.100-108
    • /
    • 2006
  • Experimental study has been a general way to evaluate inlet and exhaust duct performances, but this is not only costly but also time consuming. Computational simulation is hence replacing experimental study and consequently time and cost saving. This paper therefore aims to investigate typical component performance of the intake and exhaust ducts using 3D representation. In this study a specific inlet and exhaust was modeled and analyzed to estimate its losses and flow field using computational fluid dynamic program with flow visualization capabilities. A process that requires geometry data to be modeled. That allowed for possibility of design trade off in designing phase. Installed performance of a specific turbo shaft engine was finally evaluated with the estimated inlet, exhaust and other accessories losses.

Development of an Advanced Rotorcraft Preliminary Design Framework

  • Lim, Jae-Hoon;Shin, Sang-Joon;Kim, June-Mo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.134-139
    • /
    • 2009
  • Various modules are generally combined with one another in order to perform rotorcraft preliminary design and its optimization. At the stage of the preliminary design, analysis fidelity is less important than the rapid assessment of a design is. Most of the previous researchers attempted to implement sophisticated applications in order to increase the fidelity of analysis, but the present paper focuses on a rapid assessment while keeping the similar level of fidelity. Each small-sized module will be controlled by an externally-operated global optimization module. Results from each module are automatically handled from one discipline to another which reduces the amount of computational effort and time greatly when compared with manual execution. Automatically handled process decreases computational cycle and time by factor of approximately two. Previous researchers and the rotorcraft industries developed their own integrated analysis for rotorcraft design task, such as HESCOMP, VASCOMP, and RWSIZE. When a specific mission profile is given to these programs, those will estimate the aircraft size, performance, rotor performance, component weight, and other aspects. Such results can become good sources for the supplemental analysis in terms of stability, handling qualities, and cost. If the results do not satisfy the stability criteria or other constraints, additional sizing processes may be used to re-evaluate rotorcraft size based on the result from stability analysis. Trade-off study can be conducted by connecting disciplines, and it is an important advantage in a preliminary design study. In this paper among the existing rotorcraft design programs, an adequate program is selected for a baseline of the design framework, and modularization strategy will be applied and further improvements for each module be pursued.

Hinge rotation of a morphing rib using FBG strain sensors

  • Ciminello, Monica;Ameduri, Salvatore;Concilio, Antonio;Flauto, Domenico;Mennella, Fabio
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1393-1410
    • /
    • 2015
  • An original sensor system based on Fiber Bragg Gratings (FBG) for the strain monitoring of an adaptive wing element is presented in this paper. One of the main aims of the SARISTU project is in fact to measure the shape of a deformable wing for performance optimization. In detail, an Adaptive Trailing Edge (ATE) is monitored chord- and span-wise in order to estimate the deviation between the actual and the desired shape and, then, to allow attaining a prediction of the real aerodynamic behavior with respect to the expected one. The integration of a sensor system is not trivial: it has to fit inside the available room and to comply with the primary issue of the FBG protection. Moreover, dealing with morphing structures, large deformations are expected and a certain modulation is necessary to keep the measured strain inside the permissible measure range. In what follows, the mathematical model of an original FBG-based structural sensor system is presented, designed to evaluate the chord-wise strain of an Adaptive Trailing Edge device. Numerical and experimental results are compared, using a proof-of-concept setup. Further investigations aimed at improving the sensor capabilities, were finally addressed. The elasticity of the sensor structure was exploited to enlarge both the measurement and the linearity range. An optimisation process was then implemented to find out an optimal thickness distribution of the sensor system in order to alleviate the strain level within the referred component.

A Study on Defect Diagnostics of Gas-Turbine Engine on Off-Design Condition Using Genetic Algorithms (유전 알고리즘을 이용한 탈 설계 영역에서의 항공기용 가스터빈 엔진 결함 진단)

  • Yong, Min-Chul;Seo, Dong-Hyuck;Choi, Don-Whan;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.350-353
    • /
    • 2007
  • In this study, the genetic algorithm has been used for the real-time defect diagnosis on the operation of the aircraft gas-turbine engine. The component elements of the gas-turbine engine for consideriation of the performance deterioration is consist of the compressor, the gas generation turbine and the power turbine, repectively. Compared to the on-design point on the sea-level condition, the learning data has been increased 200 times in case of the off-design conditions for the altitude, the flight mach number and the fuel consumption. Therefore, enormous learning time has been required for the satisfied convergence. The optimum division has been proposed to decrease learning time as well as to obtain high accuracy. As results, the RMS errors of the defect diagnosis using the genetic algorithm have been estimated under 5 %.

  • PDF

The Design and Implementation of S/W Packet Modem based on Frequency Hopping Legacy Radio System (재래식 주파수도약 통신장비용 S/W 패킷모뎀 개발 및 적용에 관한 연구)

  • Koo, Jung;Pyo, Sang-Ho;Kang, Kyeong-Sung;Kim, Ki-Hyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.222-231
    • /
    • 2011
  • In this paper, we have proposed a method which can make it possible to stably transmit and receive data like the ARC-164 radio frequency hopping environment as a S/W packet modem with PSK modulation. This is a method that the S/W packet modem with PSK digital modulation and the use of PC sound cards change over from data to voice signals and then transmit/receive data. We confirmed not only that it is possible to solve the slow speed communication with the use of sending data through multi-channels and PSK modulation that has the ability to methodically improve transmission rates, but also that it is possible to send the state of frequency hopping stably. In conclusion, we've confirmed both tactical values that though the transmission rate may be a tad slow, a state of frequency hopping of more than 94% confidence plus voice and data can be sent via radio at the same time. In this paper, the proposed S/W packet modem is only an implemented S/W component, so when we apply it to aircraft that we don't consider EMC problems with, then we have the advantage of a wider use of conventional UHF/VHF/HF radio that is possible to voice communication. If we recognize these operational requirements, we can apply for a lot of field equipment efficiently.

A Study on Truncated Flapped Airfoil for Efficient Icing Wind Tunnel Test (효율적 결빙 시험을 위한 절단 익형 형상 연구)

  • Jung, Sung-Ki;Lee, Chang-Hoon;Nagdewe, Suryakant;Myong, Rho-Shin;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.6
    • /
    • pp.481-486
    • /
    • 2011
  • The evaluation of supercooled water droplet impingement characteristics of full-scale aircraft components in wind tunnels under icing conditions has been severely limited by the relative size of the component and the test facility. The concept of truncated airfoil sections has been suggested in order to extend the operational range of icing tunnels. With proper deflection of the small trailing-edge flap on the truncated airfoil the local pressure distribution may remain very close to that of the full-scale airfoil. In this study the shape of a truncated flapped airfoil is investigated for various deflection angles. To validate the truncated flapped airfoils, air flow and collection efficiency over the truncated airfoil are compared with the results of the full-scale airfoil obtained from the state-of-the-art icing simulation code.

A Study on Improvement about abnormal display of Multi Function Display for KUH (한국형 기동헬기 다기능시현기의 이상시현 개선에 관한 연구)

  • Kim, Young Mok;Chang, Joong Jin;Jun, Byung Kyu;Kim, Chang Young;Kim, Tae Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.4
    • /
    • pp.344-350
    • /
    • 2014
  • Multi Function Display(MFD) of Korean Utility Helicopter(KUH) is the component of mission management/display control system and displays image information(navigation, flight, survivability, digital map, maintenance) acquired from Mission Computer(MC) while the aircraft is operated. It is an essential equipment for pilots to perform flight mission and it has functions of display scene control, data display, built in test(BIT) and brightness control. In this paper, it is analyzed the cause of abnormal display(flickering) on MFD and summarized the design changes to solve the defect. It is also described system safety analysis and suggested verification results of flight/ground test.

A Comparative Study of Algorithms for Multi-Aspect Target Classifications (다중 각도 정보를 이용한 표적 구분 알고리즘 비교에 관한 연구)

  • 정호령;김경태;김효태
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.6
    • /
    • pp.579-589
    • /
    • 2004
  • The radar signals are generally very sensitive to relative orientations between radar and target. Thus, the performance of a target recognition system significantly deteriorates as the region of aspect angles becomes broader. To address this difficulty, in this paper, we propose a method based on the multi-aspect information in order to improve the classification capability ever for a wide angular region. First, range profiles are used to extract feature vectors based on the central moments and principal component analysis(PCA). Then, a classifier with the use of multi-aspect information is applied to them, yielding an additional improvement of target recognition capability. There are two different strategies among the classifiers that can fuse the information from multi-aspect radar signals: independent methodology and dependent methodology. In this study, the performances of the two strategies are compared within the frame work of target recognition. The radar cross section(RCS) data of six aircraft models measured at compact range of Pohang University of Science and Technology are used to demonstrate and compare the performances of the two strategies.

X-Band Phased Array Antenna Module for the Beam Compensation of an Aircraft Wing Mounted Antenna (항공기 날개 탑재 안테나의 빔 보상을 위한 X-대역 위상 배열 안테나 모듈)

  • Choi, Woo-Yeol;Seo, Jung-Hoon;Kim, Hyun-Ho;Baek, Kun-Woo;Hong, Sung-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.11
    • /
    • pp.978-986
    • /
    • 2016
  • X-band phased array antenna module for the compensation of deformed beam direction by wing deformation is designed and fabricated. The phased array antenna module consists of array antenna, phase shifter, power divider and control circuit. To select out the best component, the variation of radiation pattern by wing bending and phase error of components is simulated. The fabricated phased array antenna module shows an antenna gain of 5.84 dBi, a return loss of 13.6 dB and a bandwidth of 10.6 % at 9.375 GHz. The test bed was set up to verify the performance of beam direction compensation. This test confirmed that the main beam direction of array antenna has been well restored under wing bending of 9 %.

High Power Amplifier Design and Fabrication for Tactical Data Link (전술데이터링크용 고출력증폭기 설계 및 제작)

  • Kim, Jong-Sung;Bae, Moon-Kwan;Kim, Joo-Yeon
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.338-347
    • /
    • 2017
  • This paper describes the design and fabrication of a high power amplifier which is a component of TDL(Tactical Data Link) aircraft terminal. We applied high-speed frequency hopping technology, cognitive radio technology, and receive filter bank technology to efficiently use limited frequency resources with radar and other communication equipment using the same frequency band. The high-power amplifier is physically composed of a transmitter, a receiver, a mechanical part, and a cable assembly, and is designed to meet temperature characteristics and electrical characteristics such as maximum transmission distance and reception sensitivity. Modeling and simulator were used to satisfy the requirement of high power amplifier. The transmit power and the noise figure were measured at 50.02dBm and 2.682dB, respectively. It was confirmed that all the required specifications were satisfied in the electrical characteristics test and the environmental characteristic test.