• Title/Summary/Keyword: Aircraft Parts

Search Result 401, Processing Time 0.022 seconds

A Study on Parts Manufacturer Approval in Civil Aviation Law (항공기 부품제작자증명에 관한 연구)

  • Lee, Kang-Yi;Jin, Young-Kwon;Lee, Jong-Hee;Lee, Kwang-Hee
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.17
    • /
    • pp.133-152
    • /
    • 2003
  • Certification by Civil Aviation Law is necessary for aircraft parts and appliances as well as aircraft, engines, and propellers to ensure safety and reliability in operation. Advanced countries in aerospace industry as like U.S.A require Parts Manufacturer Approval for aircraft parts and Technical Standard Order Authorization for designated appliances. However, there are no legal requirements for certification of aircraft parts and appliances in Korea until now. This study presents the draft to revise Civil Aviation Law, which is applicable to set up domestic certification system and maintain it equivalent to U.S. Federal Aviation Regulation.

  • PDF

Quantitative Visualization of Outlet Flow of the Centrifugal Blower (원심 블로어 출구 유동의 정량적 가시화 연구)

  • Tu, Xin Cheng;Kim, Sung-Jun;Park, Seung Ha;Kim, Hyoung-Bum
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.1
    • /
    • pp.25-29
    • /
    • 2014
  • The outlet flow of the centrifugal blower were quantitatively visualized using particle image velocimetry. Because the centrifugal blower is one of the key parts of electric vehicle battery cooling system, the quantitative information of centrifugal blower is necessary to design and optimize the cooling system. The effect of different inlet flow condition to the outlet flow was investigated in this study. Two different inlet ducts were used. One is the straight inlet and the other is a bended one. The results clearly showed the outlet flow asymmetry in both inlet ducts. When the blower has the bended inlet, the flow rate decreases due to the increase of the head loss.

Characteristics of Surface Roughness in the Wire-Cut Electric Discharge Cutting Conditions of Aluminium Alloy 2024 (알루미늄 합금 2024에서 와이어 컷 방전가공조건에 따른 표면 거칠기 특성)

  • Lee, Soon-Kwan;Ryu, Cheong-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • Currently, the aircraft industry, aircraft parts as well as airframe have been developed in producing, the aircraft parts and fuselages have been produced the product by cutting rather than forging and casting because of the residual stress and stress concentration. In this study, the aircraft is being used in many parts of aluminium alloy 2024 in wire-cut E.D.M. The selected experimental parameters are peak current, no-load voltage, off time and feed rate. It is found that cutting mountain part on surface roughness of the curve 0.3mm than 0.25mm diameter wire electrode is stable in many uniform distribution.

Aerodynamic design optimization of an aircraft wing for drag reduction using computational fluid dynamics approach

  • Shiva, Kumar M.R;Srinath, R;Vigneshwar, K;Ravi, Kumar B
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.15-20
    • /
    • 2020
  • The aircraft industry supports aviation by building aircraft and manufacturing aircraft parts for their maintenance. Fuel economization is one of the biggest concerns in the aircraft industry. The reduction in specific fuel consumption of aircraft can be achieved by a variety of means, simplest and more effective is the one to impose minor modifications in the aircraft main wing or the parts which are exposed to the air flow. This method can lead to a reduction in aerodynamic resistance offered by the air and have a smoother flight. The main objective of this study is to propose geometric design modifications on an existing aircraft wing which acts as a vortex generator and it can reduce the drag and increase lift to drag ratio, leading to lower fuel consumption. The NACA 2412 aircraft wing is modified and designed. Rigorous flow analysis is carried out using computational fluid dynamics based software Ansys Fluent. Results show that saw tooth modification to the main wing shows the best aerodynamic efficiency as compared to other modifications.

Mechanical Properties and Microstructure of Mg-Zn-(Mn)-Ca Alloys (Mg-Zn-(Mn)-Ca 합금의 미세조직 및 기계적성질)

  • Eom, Jeong-Pil;Cha, Dong-Deuk;Lim, Su-Guen;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.17 no.6
    • /
    • pp.592-597
    • /
    • 1997
  • The microstructure and tensile properties of Mg-Zn-Ca and Mg-Zn-Mn-Ca alloys have been investigated. The alloys were obtained by melting in a low carbon crucible coated with boron nitride under an Ar gas atmosphere to prevent oxidation and combustion. The Mg alloy melt was cast into the metallic mold at room temperature, and cooling part was located at the bottom of mold. The phase formed during solidification of the Mg-Zn-(Mn) alloys containing 0.5%Ca is $Ca_2Mg_6Zn_3$. The yield strength and ultimate tensile strength of the alloys increased with increasing Zn content, but the ductility did not change with increasing Zn content. The addition of Mn improves the yield strength and ultimate tensile strength of the alloys, but the ductility did not change. Tensile fracture of the alloys revealed brittle failure, with cracking along the $Ca_2Mg_6Zn_3$ phase. The variation of stress with strain obeyed the relationship of the ${\sigma}=K{\varepsilon}^n$.

  • PDF

Structural Analysis of a Composite Target-drone

  • Park, Yong-Bin;Nguyen, Khanh-Hung;Kweon, Jin-Hwe;Choi, Jin-Ho;Han, Jong-Su
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.84-91
    • /
    • 2011
  • A finite element analysis for the wing and landing gear of a composite target-drone air vehicle was performed. For the wing analysis, two load cases were considered: a 5g symmetric pull-up and a -1.5g symmetric push-over. For the landing gear analysis, a sinking velocity of 1.4 m/s at a 2g level landing condition was taken into account. MSC/NASTRAN and LS-DYNA were utilized for the static and dynamic analyses, respectively. Finite element results were verified by the static test of a prototype wing under a 6g symmetric pull-up condition. The test showed a 17% larger wing tip deflection than the finite element analysis. This difference is believed to come from the material and geometrical imperfections incurred during the manufacturing process.

Simulation Modeling Method Using ARENATM Considering Alternative Machines in the Manufacturing System for Aircraft Parts (대체장비를 고려한 항공기 부품 생산라인의 ARENATM 시뮬레이션 모델링 방법론)

  • Na, Sang Hyun;Moon, Dug Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.4
    • /
    • pp.1-12
    • /
    • 2016
  • The industry producing the parts of aircraft engines is a traditional order-made system with highly variety and small quantity, and the manufacturing system is the typical job shop with identical or non-identical multiple machines in a workstation. Furthermore, there are many alternative operations and alternative machines allowed in machining processes, and tremendous routings and assembly operations should be considered. Usually simulation is the most efficient technology to analyze such a complex system, and high modeling skills are required for developing the simulation models. In this paper, a case study on a company which produces the parts of aircraft engines is introduced, specially focused on simulation modeling methodologies for the complex system.

Analysis on Stitched Mode I Specimen Using Spring Elements

  • Tapullima, Jonathan;Sim, Hyung Woo;Kweon, Jin Hwe;Choi, Jin Ho
    • Composites Research
    • /
    • v.32 no.2
    • /
    • pp.102-107
    • /
    • 2019
  • Several studies related to reinforce composites structures in the through thickness direction have been developed along the years. As follows, in this study a new reinforced process is proposed based on previous experimental results using a novel stitching process in T-joints and one-stitched specimens. It was established the need to perform more analysis under standard test methods to obtain a better understanding. FEM analysis were compared after performed mode I interlaminar fracture toughness test, using different stitching patterns to analyze the through thickness strength with reference laminates without stitching. The stitching patterns were defined in $2{\times}2$ and $3{\times}3$, where the upper and lower head of the non-continuous stitching process (I-Fiber) has proven to influence in a higher through thickness strength of the laminate. In order to design the numerical model, cohesive parameters were required to define the surface to surface bonding elements using the cohesive zone method (CZM) and simulate the crack opening behavior from the double cantilever beam (DCB) test.

Unit Cell FEM Analysis Using I-Fiber Single Stitch with Different Thickness

  • Tapullima, Jonathan;Park, Gyu Yeong;Yoon, Dong Hwan;Choi, Jin Ho
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.30-34
    • /
    • 2021
  • This paper present a three-dimensional unit cell finite element analysis to predict the pull-out behavior of a single stitch in a composite laminate. The stitching process used for this study correspond to the I-fiber stitching method that has been studied by the Composite Structures Lab (CSL) as a new through-thickness reinforced method. A total of six cases were analyzed, which were divided in two groups by the stitching yarn used, 6k and 12k. Each group of cases have three different thickness according to the amount of plies; 16 plies, 32 plies and 64 plies. The finite element analysis used the cohesive zone method to characterize the single stitch reinforcement in the interface. Due to the complexity of the load vs displacement curves taken from the experimental results, a bilinear and trilinear bridging laws were implemented in the models. The cohesive parameters used for each case showed a good agreement with the experimental data and can be used for future studies.

Contour Parallel Offsetting and Tool-Path Linking Algorithm For Pocketing (포켓가공을 위한 오프셋 및 공구경로 연결 알고리즘)

  • Huh Jin-Hun;Kim Young-Yil;Jun Cha-Soo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.200-207
    • /
    • 2003
  • Presented in this paper is a new fast and robust algorithm generating NC tool path for 2D pockets with islands. The input shapes are composed of line segments and cricular arcs. The algorithm has two steps: creation of successive offset loops and linking the loops to tool path. A modified pair-wise technique is developed in order to speed up and stabilize the offset process, and the linking algorithm is focused on minimizing tool retractions and preventing thin-wall rotting The proposed algorithm has been implemented In C++ and some illustrative examples are presented to show the practical strength of the algorithm.

  • PDF