• Title/Summary/Keyword: Aircraft Manufacturing

Search Result 268, Processing Time 0.024 seconds

An Analysis of Core Technologies and Acquisition Methodology for Combat Aircraft Powerplants (전투기 추진기관 기술현황 분석 및 핵심기술 획득 방안)

  • 이기영;김해원;강수준
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.92-105
    • /
    • 2000
  • Core technologies of powerplants, which are necessary for the development of Korean type combat aircraft, are analyzed. And then, the acquisition methodologies for the technologies are proposed. With respect to the aircraft engine design and manufacturing technologies, simple basic technologies such as component manufacturing and assembling technology come to close to those of advanced countries, but the core technologies were not acquired or in the understanding level only. Therefore, the research on the component manufacturing technology should be specialized for buildup of international competition first, and the research on core technologies such as high pressure compressor design, blisk, FADEC and hollow fan blade design should be concentrated step by step by taking an active participation in the development project of international cooperative aircraft powerplants.

  • PDF

SNU Human Powered Aircraft Design and Manufacturing (서울대학교 인간동력항공기의 설계 및 제작)

  • Eun, Won-Jong;Kim, Jung-Heon;Park, Seong-Woo;Kang, Jung-Pyo;Kim, Tae-Hwan;Park, Jae-Hyun;Han, Yoo-Ri;Lee, Da-Woon;Hong, Jong-Hwa;Lee, Yoon-Hyuk;Choi, Han-Seul;Park, Ji-Eun;Park, Joong-Hyun;Lee, Woo-Hee;Jang, Bum-Chan;Shin, Sang-Joon
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.230-240
    • /
    • 2013
  • Human powered aircraft: the aim is to fly only by human power, features many challenging issues. Contrary to the general aircraft operated by an engine, human powered aircraft, that manoeuvres by lower power, requires additional consideration about weight, material, aerodynamical and structural analysis. Since this aircraft flies at a low speed, low Reynolds number flight will need to be taken into account. In this paper, SNU (Seoul National University) Human Powered Aircraft was designed by comparing it with the existing human power aircrafts, as well as by using theoretical analysis that obtains the design parameters. Also, this paper discuss about the manufacturing process using composite material for real human powered aircraft.

Analysis of Cutting Force and Plastic Deformation Occurring During Machining of Ti-6Al-4V Alloy Aircraft Parts (Ti-6Al-4V 합금 항공기 부품 가공 시 발생하는 절삭추력 및 소성변형에 대한 해석)

  • Son, Hwi Jun;Kim, Seok;Park, Ki-Beom;Jung, Hyoun Chul;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.25-31
    • /
    • 2022
  • Recently, investment in the aerospace industry has increased, and titanium alloys have been widely adopted for manufacturing parts in the aerospace industry. The Ti-6Al-4V alloy has high strength in high-temperature and high-pressure environments and is evaluated as a material with excellent heat, corrosion, and abrasion. However, titanium alloys are expensive, difficult to cut, and possess a large cutting load during the drilling process. In this study, the cutting force generated in the drilling process of Ti-6Al-4V alloy was verified via finite element analysis (FEM) and cutting force measurement experiments. A structural analysis was performed based on the cutting analysis data to verify the plastic deformation occurring during the drilling process of cylindrical Ti-6Al-4V alloy aircraft parts. Methods were proposed to predict the amount of deformation that occur during the manufacturing process of titanium-alloy aircraft parts and control the external environment, to minimize the amount of deformation.

Numerical Study of Aircraft Winglet Mold Manufacturing using Flexible Forming (가변성형기술을 활용한 항공기 윙렛용 몰드 제작에 관한 수치적 연구)

  • Park, J.W.;Ku, T.W.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.23 no.8
    • /
    • pp.482-488
    • /
    • 2014
  • Flexible forming technology has advantages in sheet metal forming, because it can be implemented to produce various shaped molds using a single apparatus. Due to this advantage, it is possible to apply it to the manufacture of an aircraft winglet mold. Presently, most aircraft winglets are manufactured from composite materials. Therefore, the mold for the curing process is an essential element in the fabrication of such composite materials. Compared to conventional mold forming, flexible forming has some advantages such as reduced manufacturing cost and uniformity of mold thickness. If the thickness of the mold is consistent, then the heat transfer will occur uniformly during the curing process leading to improved formability of the composite material. In the current study, numerical simulations were performed to investigate the possibility of flexible forming for manufacturing of the winglet mold. In order to match the size of the actual product, the shape of objective surface was divided to fit the dimensions of the apparatus. The results from the numerical simulations are compared with the objective surface to verify the accuracy. In conclusion, the current study confirms the feasibility and the potential to manufacture winglet molds by flexible forming.

An automatic 3D CAD model errors detection method of aircraft structural part for NC machining

  • Huang, Bo;Xu, Changhong;Huang, Rui;Zhang, Shusheng
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.253-260
    • /
    • 2015
  • Feature-based NC machining, which requires high quality of 3D CAD model, is widely used in machining aircraft structural part. However, there has been little research on how to automatically detect the CAD model errors. As a result, the user has to manually check the errors with great effort before NC programming. This paper proposes an automatic CAD model errors detection approach for aircraft structural part. First, the base faces are identified based on the reference directions corresponding to machining coordinate systems. Then, the CAD models are partitioned into multiple local regions based on the base faces. Finally, the CAD model error types are evaluated based on the heuristic rules. A prototype system based on CATIA has been developed to verify the effectiveness of the proposed approach.

Determination of the Pallet Quantity Using Simulation in the FMS for Aircraft Parts (시뮬레이션 기법을 이용한 항공기 부품 가공 유연생산시스템의 팔레트 수량 결정)

  • Kim, Deok Hyun;Lee, In Su;Cha, Chun Nam
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.59-69
    • /
    • 2018
  • This study deals with the case study on the pallet quantity determination problem for the flexible manufacturing system producing 32 different types of aircraft wing ribs which are major structures of an aircraft wings. A Korean company has constructed the WFMS (wing rib flexible manufacturing system) that is composed of several automated equipments such as the 5-axis machining centers, the RGV (rail guided vehicles)s, the AS/RS (automated storage and retrieval system), the loading/unloading stations, and so on. Pallets play a critical role in the WFMS to maintain high system utilization and continuous work flow between 5-axis machining machines and automated material handling devices. The discrete event simulation method is used to evaluate the performance of the WFMS under various pallet mix alternatives for wing rib manufacturing processes. Four performance measures including system utilization, throughput, lead-time and work in process inventory level are investigated to determine the best pallet mix alternative. The best pallet mix identified by the simulation study is adopted in setting up and operating a real Korean aircraft parts manufacturing shop. By comparing the real WFMS's performances with those of the simulation study, we discussed the cause of performance difference observed and the necessity of developing the CPS (cyber physical system).

On the development of the Anuloid, a disk-shaped VTOL aircraft for urban areas

  • Petrolo, Marco;Carrera, Erasmo;D'Ottavio, Michele;de Visser, Coen;Patek, Zdenek;Janda, Zdenek
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.3
    • /
    • pp.353-378
    • /
    • 2014
  • This paper deals with the early development of the Anuloid, an innovative disk-shaped VTOL aircraft. The Anuloid concept is based on the following three main features: the use of a ducted fan powered by a turboshaft for the lift production to take-off and fly; the Coanda effect that is developed through the circular internal duct and the bottom portion of the aircraft to provide further lift and control capabilities; the adoption of a system of ducted fixed and swiveling radial and circumferential vanes for the anti-torque mechanism and the flight control. The early studies have been focused on the CFD analysis of the Coanda effect and of the control vanes; the flyability analysis of the aircraft in terms of static performances and static and dynamic stability; the preliminary structural design of the aircraft. The results show that the Coanda effect is stable in most of the flight phases, vertical flight has satisfactory flyability qualities, whereas horizontal flight shows dynamic instability, requiring the development of an automatic control system.

Study on Deformation Analysis of Holes during Drilling of Aircraft Engine Compressor Cases (항공기 엔진 압축기 케이스의 드릴링 시 홀의 변형 해석에 관한 연구)

  • Park, Ki-Beom;Cho, Young-Tae;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.65-70
    • /
    • 2018
  • M152, used for aircraft engine compressor cases, causes many problems in the cutting process due to its high hardness and high toughness. Characterized by a concave cylindrical center, aircraft engine compressor cases are thin but have multiple side holes to connect with internal parts. Thus, deformation occurs despite the jig sustaining the inside. The object of this study was to lessen the deformation arising from drilling by improving the drilling jig for aircraft engine compressor cases. To this end, an aircraft engine compressor case modeled with SolidWorks was analyzed with ANSYS under real conditions. Then, to secure reliability, the analyzed deformation was compared with the actual deformation. Based on the results, the effects of the improved drilling jig for aircraft engine compressor cases were verified.

A Study on Product Liability of Aircraft Manufacturer (항공기제조업자(航空機製造業者)의 책임(責任)에 관한 연구)

  • Song, S.H.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.12 no.3
    • /
    • pp.41-63
    • /
    • 2004
  • The area covered by product liability in broadest sense is so vast that an attempt to analyse all its impact on the aviation world risk. Every effort has been made to confine our review of subject a closely as possible to its influence on aircraft manufacturers, airlines and passengers, in spite of strong connections with other spheres of commercial. Product Liability in aviation is the liability of aircraft's manufacturer, processor or non-manufacturing seller for injury to the person or property of a buyer or third party caused by a product which has been sold. Here-in a product is aircraft, third party is passengers who suffered damage by defective design, defective construction, inadequate instructions for handling in aircraft. Whenever a product turns out to be defective after it has been sold, there are under Anglo-American law three remedies available against the aircraft's manufacturer (1) liability for negligence (2) breach of warranty (3) strict liability in tort. There are Under continental law Three remedies available against the aircraft's manufacturer (1) liability for defective warranty (2) liability for non-fulfillment of obligation (3) liability in tort. It is worth pointing out here an action for breach of warranty or for defective warranty, for non-fulfillment of obligation is available only to direct purchaser on the basis of his contract with the aircraft's manufacturer, which of course weakness its range and effectiveness. An action for tort offers the advantage of being available also to third parties who have acquired the defective product at a later stage. In tort, obligations are constituted not only by contract, but also by stature and common law. In conclusion, There in no difference in principle of law. In conclusion I would like to make few suggestions regarding the product liability for aircraft's manufacturer. Firstly, current general product liability code does not specify whether government offices(e.g. FAA) inspector conducted the inspection and auditory certificate can qualify as conclusive legal evidence. These need to be clarified. Secondly, because Korea is gaining potential of becoming aircraft's manufacturer through co-manufacturing and subcontracting-manufacturing with the US and independent production, there needs legislation that can harmonize the protection of both aircraft's manufacturers and their injured parties. Since Korea is in primary stage of aviation industry, considerate policy cannot be overlooked for its protection and promotion. Thirdly, because aircraft manufacturers are risking restitution like air-carriers whose scope of restitution have widened to strict and unlimited liability, there needs importation of mandatory liability insurance and national warranty into the product liability for aircraft's manufacturers. Fourthly, there needs domestic legislation of air transportation law that clearly regulates overall legal relationship in air transportation such as carrier & aircraft manufacturer's liability, and aviation insurance.

  • PDF

Characteristics of Surface Roughness in the Wire-Cut Electric Discharge Cutting Conditions of Aluminium Alloy 2024 (알루미늄 합금 2024에서 와이어 컷 방전가공조건에 따른 표면 거칠기 특성)

  • Lee, Soon-Kwan;Ryu, Cheong-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • Currently, the aircraft industry, aircraft parts as well as airframe have been developed in producing, the aircraft parts and fuselages have been produced the product by cutting rather than forging and casting because of the residual stress and stress concentration. In this study, the aircraft is being used in many parts of aluminium alloy 2024 in wire-cut E.D.M. The selected experimental parameters are peak current, no-load voltage, off time and feed rate. It is found that cutting mountain part on surface roughness of the curve 0.3mm than 0.25mm diameter wire electrode is stable in many uniform distribution.