• Title/Summary/Keyword: Airborne gamma-ray spectrometry

Search Result 8, Processing Time 0.018 seconds

Full spectrum estimation of helicopter background and cosmic gamma-ray contribution for airborne measurements

  • Lukas Kotik;Marcel Ohera
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1052-1060
    • /
    • 2023
  • The airborne radiation monitoring has been used in geophysics for more than forty years and now it also has its important role in emergency monitoring. The aircraft background and the cosmic gamma-rays contribute to the measured gamma spectrum on the aircraft board. This adverse effect should be eliminated before the data processing. The paper describes two semiparametric methods to estimate the full spectrum aircraft background and cosmic gamma-ray contribution from spectra measured at altitudes where terrestrial contribution is negligible. The methods only assume to know possible peak positions in spectra and their full width at half maximum, that can be easily obtained e.g. from terrestrial measurement. The methods were applied to real experimental data acquired on Mi-17 and Bell 412 helicopter boards. The IRIS airborne gamma-ray spectrometer, with 4×4 L NaI(Tl) crystals, produced by Pico Envirotec Inc., Canada, was used on helicopters' boards. To obtain valid estimate of the aircraft background and the cosmic contribution, the measurements over sea and large water areas were carried out. However, the satisfactory results over inland were also achieved comparing with those acquired over large water areas.

Application of advanced spectral-ratio radon background correction in the UAV-borne gamma-ray spectrometry

  • Jigen Xia;Baolin Song;Yi Gu;Zhiqiang Li;Jie Xu;Liangquan Ge;Qingxian Zhang;Guoqiang Zeng;Qiushi Liu;Xiaofeng Yang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2927-2934
    • /
    • 2023
  • The influence of the atmospheric radon background on the airborne gamma spectrum can seriously affect researchers' judgement of ground radiation information. However, due to load and endurance, unmanned aerial vehicle (UAV)-borne gamma-ray spectrometry is difficulty installing upward-looking detectors to monitor atmospheric radon background. In this paper, an advanced spectral-ratio method was used to correct the atmospheric radon background for a UAV-borne gamma-ray spectrometry in Inner Mongolia, China. By correcting atmospheric radon background, the ratio of the average count rate of U window in the anomalous radon zone (S5) to that in other survey zone decreased from 1.91 to 1.03, and the average uranium content in S5 decreased from 4.65 mg/kg to 3.37 mg/kg. The results show that the advanced spectral-ratio method efficiently eliminated the influence of the atmospheric radon background on the UAV-borne gamma-ray spectrometry to accurately obtain ground radiation information in uranium exploration. It can also be used for uranium tailings monitoring, and environmental radiation background surveys.

Background Reduction for the ${\gamma}$-Ray Spectrometry of Environmental Radioactivity (환경방사능의 감마선 분광분석을 위한 백그라운드 소멸)

  • Seo, Bum Kyoung;Lee, Kil Yong;Yoon, Yoon Yeol;Lee, Dae Won
    • Analytical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.212-220
    • /
    • 2001
  • This study was performed to establish the analytical method of radium and radon in various environmental samples with the ${\gamma}$-ray spectrometry. The major problem in the measurements of low level ${\gamma}$-ray, such as environmental radioactivity, is the fluctuation of ${\gamma}$-ray background spectrum. To overcome this problem, a nitrogen gas was filled up in the detector chamber to reduce the background counts due to airborne radioactivities, i.e., $^{214}Pb$ and $^{214}Bi$, the daughters of $^{222}Rn$ in air. When nitrogen gas flowed around the detector, peak counts of ${\gamma}$-rays from the daughters of $^{222}Rn$ decreased about 80% below 1 MeV and about 20~50% above 1 MeV. The use of nitrogen purging results in approximately tenfold increment of sensitivity.

  • PDF

Numerical evaluation of gamma radiation monitoring

  • Rezaei, Mohsen;Ashoor, Mansour;Sarkhosh, Leila
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.807-817
    • /
    • 2019
  • Airborne Gamma Ray Spectrometry (AGRS) with its important applications such as gathering radiation information of ground surface, geochemistry measuring of the abundance of Potassium, Thorium and Uranium in outer earth layer, environmental and nuclear site surveillance has a key role in the field of nuclear science and human life. The Broyden-Fletcher-Goldfarb-Shanno (BFGS), with its advanced numerical unconstrained nonlinear optimization in collaboration with Artificial Neural Networks (ANNs) provides a noteworthy opportunity for modern AGRS. In this study a new AGRS system empowered by ANN-BFGS has been proposed and evaluated on available empirical AGRS data. To that effect different architectures of adaptive ANN-BFGS were implemented for a sort of published experimental AGRS outputs. The selected approach among of various training methods, with its low iteration cost and nondiagonal scaling allocation is a new powerful algorithm for AGRS data due to its inherent stochastic properties. Experiments were performed by different architectures and trainings, the selected scheme achieved the smallest number of epochs, the minimum Mean Square Error (MSE) and the maximum performance in compare with different types of optimization strategies and algorithms. The proposed method is capable to be implemented on a cost effective and minimum electronic equipment to present its real-time process, which will let it to be used on board a light Unmanned Aerial Vehicle (UAV). The advanced adaptation properties and models of neural network, the training of stochastic process and its implementation on DSP outstands an affordable, reliable and low cost AGRS design. The main outcome of the study shows this method increases the quality of curvature information of AGRS data while cost of the algorithm is reduced in each iteration so the proposed ANN-BFGS is a trustworthy appropriate model for Gamma-ray data reconstruction and analysis based on advanced novel artificial intelligence systems.

A New Aluminium Container for $\gamma$-Ray Spectrometry Analysis of Radium and Radon (라듐 및 라돈의 감마선 분광 분석을 위한 알루미늄 용기의 제작 및 특성 조사)

  • Lee, Kil Yong;Yoon, Yoon Yeol;Seo, Bum Kyoung
    • Analytical Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.743-750
    • /
    • 2000
  • For the ${\gamma}$-ray spectrometry analysis of radium and radon in environmental samples, plastic Marinelli beakers have been usually used. But, there are two problems; one is the increment of background by adsorption of airborne radon daughters on the plastic beaker, and other is the incompleteness of radioactive equilibrium by the loss of gaseous radon produced during the radioactive equilibrium process. In order to solve these problems, we made aluminium counting container, and investigated its characteristics. We investigated radioactive equilibrium process using the aluminium container. We found that both solid and liquid samples reached at radioactive equilibrium state in the aluminium container without loss of gaseous radon. By the use of the aluminium container, we established radon and radium analysis method of solid and liquid samples using gamma-ray spectrometry.

  • PDF

Leveling the Gamma-ray Spectrometric Data using Baseline Survey (Baseline 탐사를 이용한 항공 방사능 탐사 자료 맞추기)

  • Park, Yeong-Sue;Rim, Hyoungrea;Lim, Mutaek;Shin, Young Hong
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.3
    • /
    • pp.97-104
    • /
    • 2015
  • KIGAM has surveyed most of the Korean territory since 1982 using airborne gamma-ray spectrometry, and complete the nationwide scale map in the near future. However, since the duration of survey is too long and the conditions of survey is not consistent, the data does not have physical consistency. In addition, the window counts (count/sec) were recorded instead of potassium, uranium and thorium radioelement concentrations. Thus, the data could not be registered to the International Atomic Energy Agency (IAEA) radioelement datum. This limits the usefulness of the data and it is not possible to easily combine surveys into regional compilations or make quantitative interpretations between different survey areas. To solve these problems, we undertook a test baseline survey over Jincheon-Eumseong area, to level the different two sets of data and to map radioelement concentrations. This survey confirms to IAEA radioelement baseline. The method and procedures of data leveling prepared by this study improve the usefulness and usability of the radiometric data, and make it enable to compile the nationwide scale radioelement concentration maps.

Development and Performance of a Hand-Held CZT Detector for In-Situ Measurements at the Emergency Response

  • Ji, Young-Yong;Chung, Kun Ho;Kim, Chang-Jong;Yoon, Jin;Lee, Wanno;Choi, Geun-Sik;Kang, Mun Ja
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.87-91
    • /
    • 2016
  • Background: A hand-held detector for an emergency response was developed for nuclide identification and to estimate the information of the ambient dose rate in the scene of an accident as well as the radioactivity of the contaminants. Materials and Methods: To achieve this, the most suitable sensor was first selected as a cadmium zinc telluride (CZT) semiconductor and the signal processing unit from a sensor and the signal discrimination and storage unit were successfully manufactured on a printed circuit board. Results and Discussion: The performance of the developed signal processing unit was then evaluated to have an energy resolution of about 14 keV at 662 keV. The system control unit was also designed to operate the CZT detector, monitor the detector, battery, and interface status, and check and transmit the measured results of the ambient dose rate and radioactivity. In addition, a collimator, which can control the inner radius, and the airborne dust sampler, which consists of an air filter and charcoal filter, were developed and mounted to the developed CZT detector for the quick and efficient response of a nuclear accident. Conclusion: The hand-held CZT detector was developed to make the in-situ gamma-ray spectrometry and its performance was checked to have a good energy resolution. In addition, the collimator and the airborne dust sampler were developed and mounted to the developed CZT detector for a quick and efficient response to a nuclear accident.