• Title/Summary/Keyword: Airborne chromium

Search Result 26, Processing Time 0.03 seconds

Field Validation of a Sampling and Analytical Method Developed for Preventing Airborne Hexavalent Chromium Collected on PVC Filter from Reduction (PVC 여과지에서의 환원 방지를 위해 개발된 공기중 6가 크롬 측정방법의 현장 평가)

  • 신용철;백남원
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.2
    • /
    • pp.109-116
    • /
    • 2002
  • The purpose of this study was to evaluate a new sampling and analytical method for the determination of airborne hexavalent chromium, Cr(Ⅵ), in a field plating operation. The procedures of this new method (Shin & Paik's Method) are as the following: Airborne hexavalent chromium is collected on polyvinyl chloride (PVC) filter according to the National Institute iota Occupational Safety and Health (NIOSH) Method 7600, and the filler sample is placed in a screw-capped vial and soaked with 2% NaOH/3% Na₂CO₃ solution immediately after sampling. The Cr(Ⅵ) sample is analyzed by ion chromatography/visible spectrophotometry (IC/VS) according to the U.S. Environmental Protection Agency (EPA) Method 218.6. The airborne Cr(Ⅵ) concentrations measured by this method were compared with those determined by three reference methods: One (NIOSH/EPA Method) consisted of sampling airborne Cr(Ⅵ) on PVC filters and storing the sample filters in strew-capped vials according to the NIOSH method, and analyzing Cr(Ⅵ) in samples using IC/VS according to the EPA method. The second method (Impinger Method/NaHCO₃) consisted of absorbing airborne Cr(Ⅵ) into 0.02 M NaHCO₃ solution in midget impinger, and analyzing the Cr(Ⅵ) in samples using IC/VS. The third method was the OSHA Method ID-215. Using these four different methods, lour replicates of air samples were collected at an electroplating process and analyzed simultaneously. Two-way ANOVA and paired t-test were used to test difference among values determined by the methods. There was no significant difference and a strong correlation (r²:0.99) between Cr(Ⅵ) concentrations measured by the Shin & Paik's Method and an impinger method (p>0.05). However, Cr(Ⅵ) concentrations determined by Shin & Paik's Method were significant1y different from those by the NIOSH/EPA Method (p<0.05) or the OSHA method (p<0.05). The Cr(Ⅵ) concentrations of Shin & Paik's Method were significantly higher than those of the NIOSH/EPA Method or the OSHA method. This result indicated that the Shin & Paik's Method may prevent Cr(Ⅵ) losses caused by reduction and give more reliable results of airborne Cr(Ⅵ) concentrations in work environments.

Chromium in Erythrocytes as a Biological Marker of Worker Exposed to Hexavalent Chromium (적혈구중 크롬농도를 이용한 6가크롬 노출의 생물학적 지표)

  • Yoon, Ui-Seoung;Kim, Kwang-Jong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.10 no.1
    • /
    • pp.223-234
    • /
    • 2000
  • Objective - To evaluate the usefulness of chromium in erythrocytes as a biological marker of exposure to hexavalent chromium in chromate producers and chrome platers Methods - Blood and urine samples were ramdomly obtained from chromate producers (n=34) and chrome platers (n=35), and non-exposed workers (n=75), chromium level in erythrocytes and plasma, and urine were measured. Different chromium exposure workers were assessed through measurements of airborne hexavalent chromium concentrations using a personal air sampler. Linear associations between variables were evaluated with correlation analysis. Results - The chromate producers had mean chromium levels in erythrocytes five fold as higher than the chrome platers, and fifteen fold higher than non-exposed group. Among the chromium exposed workers, airborne hexavalent chromium was positively and strongly correlated with in erythrocytes (r=0.689, p<0.01), and erythrocytes chromium was inversely correlated with hematocrit (r=-0.441, p<0.01), hemoglobin (r=-0.465, p<0.01) and the number of red blood cells (r=-0.28, p<0.05). Conclusions - In conclusion, this study suggests that chromium in erythrocytes is a good indicator of the chromium body burden caused by exposure to hexavalent chromium.

  • PDF

Relationship between Workers′ Exposure to Airborne Chromium and Blood and Urine Chromium Levels in Plating Process (도금업체 근로자의 공기중 크롬 노출 농도와 요 및 혈중 크롬 농도간의 상관성)

  • 이지태;신용철
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.3
    • /
    • pp.1-10
    • /
    • 2001
  • This study was performed to evaluate chromium in air and chromium concentrations in whole blood and urine of workers at chrome plating factories, and to determine the correlation between environmental and biological chromium levels. This study involved 29 workers as study group and 24 undergraduate students as control group. The geometric means(GM) of airborne hexavalent chromium and total chromium concentrations in the plating factories were 3.4 $\mu\textrm{g}$/㎥ and 10.8 $\mu\textrm{g}$/㎥, respectively. Hexavalent chromium levels in two of total 29 measurements exceeded the korean occupational exposure limit and the American Conference of Governmental Industrial Hygienists Threshold Limit Value(ACGIH-TLV) of 50$\mu\textrm{g}$/㎥. Only one sample for total chromium exceeded the Korea occupational exposure limits, the ACGIH-TLV, and the National Institute for Occupational Safety and Health Recommended Exposure Limits(NIOSH-REL) of 500 $\mu\textrm{g}$/㎥. The GM of chromium concentrations in blood and urine of workers exposed to chromium were 8.4 $\mu\textrm{g}$/L and 11.9 $\mu\textrm{g}$/L. The GM of chromium concentrations in blood and urine of workers exposed to chromium were 8.4 $\mu\textrm{g}$/L and 11.9 $\mu\textrm{g}$/L, respectively, whereas the chromium concentrations in blood and urine of the controls were 1.6 $\mu\textrm{g}$/L and 3.8 $\mu\textrm{g}$/L, respectively. There were statistically significant differences of blood and urine concentrations between study group and control group (p<0.01). The chromium concentrations in urine were most highly related to hexavalent chromium, concentration in air(r=0.642, p<0.01). Also, there was a relatively high correlation between the hexavalent chromium concentrations in air and chromium concentrations in whole blood(r=0.557, p<0.05). These results indicate that whole-blood chromium with urinary chromium could be an indicator of chromium body burden caused by exposure to chromic acid mist in plating operation.

  • PDF

Exposure Assessment of Airborne Hexavalent Chromium in the South Korea Plating Industry (도금사업장에서 발생하는 공기 중 6가 크롬의 노출평가)

  • Ji-hyun An;Young Gyu Phee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.34 no.1
    • /
    • pp.98-105
    • /
    • 2024
  • Objectives: The purpose of this study was to identify the exposure level of airborne hexavalent chromium in the plating industry and the exposure level compared to domestic and international occupational exposure limits. Methods: A total 92 samples were collected from ten industrial plating sites. Hexavalent chromium samples were collected using a three-stage cassette equipped with a 37 mm, 5 ㎛ pore size PVC filter. The analysis was performed by ion chromatography. Results: The geometric mean of hexavalent chromium concentration in the plating industry was 0.052 ㎍/m2, and it was found that the average exposure level was 0.8 times the South Korean exposure limit. When applying the US ACGIH TLV, however, the average concentration was more than twice as high. Conclusions: The South Korean exposure limit for hexavalent chromium needs to be strengthened due to significant differences in exposure levels according to domestic and international occupational exposure limits. Furthermore, respiratory and dermal sensitization should be labeled.

Evaluation of Workers' Exposures to Airborne Lead chromate in the Producing and Using Industries (국내 무기안료 제조 및 취급 공정에서의 공기 중 크롬산연 노출 평가)

  • Choi, Ho Chun;An, Sun Hee;Lee, Hyun Seok;Kim, Hwa Sung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.18 no.4
    • /
    • pp.293-302
    • /
    • 2008
  • Lead chromate is made by sodium dichromate and lead acetate, and has being used widely in the part of pigment, paints, inks, plastics and so on. Even though lead chromate has health hazards which like both lead and chromium, there are a few study about pigment workplaces using lead chromate in Korea. The purpose of this study is to evaluate workers' exposure levels and airborne lead and chromium concentration in the pigment workplaces using lead chromate. There are 20 workers in the total 5 workplaces. 10 workers(50%) have been exposed to lead and 3 workers(15%) have been exposed to chromium, which exceeded the American Conference of Governmental Industrial Hygienists(ACGIH) Threshold Limit Value (Pb: $0.05\;mg/m^3$, Cr: $0.012\;mg/m^3$) and Korean Ministry of Labor's Standard. Geometric mean (GM) of airborne lead was highest in pigment ($0.0421\;mg/m^3$), paint ($0.0020\;mg/m^3$) and PVC coloring ($0.0007\;mg/m^3$), respectively(p<0.05). The result of airborne chromium concentration was paint ($0.0033\;mg/m^3$), paint ($0.0004\;mg/m^3$) and PVC coloring ($0.0003\;mg/m^3$). Also the lead and chromium concentration in the manual process is each 30 times and 10 times higher than the value in automatic process(p<0.01). In the classified process by detail, the concentration of airborne lead was $0.0638\;mg/m^3$ in grinding & packaging, mixture & after-measuring ($0.0436\;mg/m^3$), filtration & drying ($0.0402\;mg/m^3$), lead nitrate & dissolution($0.0129\;mg/m^3$), pigment commitment & mixture ($0.0013\;mg/m^3$) and dispersion & grinding ($0.0010\;mg/m^3$) (p<0.05). Moreover the concentration of a sample in weighting & packaging was $0.0023\;mg/m^3$. The concentration of lead in workers' blood was pigment (15.12 ug/dl), paint (4.74 ug/dl) and PVC coloring (2.50 ug/dl), and some samples have exceeded biological exposure limit. In conclusion, the depending on their work industry and process, workers have been exposed to the high lead chromate.

Accuracy and Precision of Microwave Oven Digestion/Atomic Absorption Spectrophotometry for Analyzing Airborne Chromium Collected on MCE Filter in Plating Operation (도금공정 크롬시료 분석을 위한 Microwave Oven Digestion/Atomic Absorption Spectrophotometry 방법의 정확도 및 정밀도 평가)

  • Lee, Byung-Kyu;Lee, Ji-Tae;Shin, Yong-Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.1
    • /
    • pp.48-55
    • /
    • 2001
  • The purpose of this study was to evaluate the analytical accuracy and precision of microwave oven digestion/atomi absorption spectrophotometry (AAS) for analyzing airborne chromium collected on mixed cellulose ester membrane (M filter from the work environment, and to compare the accuracy and the precision with those of the National Institute for Occupational Safety and Health (NIOSH) Method #7024 hot plate digestion/AAS method. For this study, field air sample pairs were collected from a electroplating process, and spiked samples in a laboratory were prepared and using these samples. Two digestion methods were comp; and evaluated in terms of recovery rate and bias as indices of accuracy and coefficient of variation as a index of precision. The results and conclusions are as follows. In spiked samples, the accuracies (% mean recoveries) of hot plate/AAS and microwave oven/AAS method were 97.19%, 97.1%, respectively, and the precisions (pooled respectively, and the precisions (pooled coefficient of variance, $CV_{pooled}$) 6.93% and 3.88%, respectively. The biases of hot plate ani microwave oven methods were 4.56 - 14.7% and 2.22 - 7.42% respectively. There was no statistically significant difference between hot plate and microwave oven methods recovery rates of spiked samples (p>0,05). Also, no statistically significant difference was shown among the concentrations of air samples determined by two method (p>0.05). In conclusion, microwave oven/AAS method h excellent accuracy and precision, and advantages such as time-saving and simple procedure in comparison with the classical NIOSH method. Therefore, this method can be use widely to analyze airborne chromium collected on MCE filter from the work environments.

  • PDF

Reduction of Hexavalent Chromium Collected on PVC Filters in Field Electroplating Process (현장 도금 공정에서 PVC 여과지에 채취된 6가 크롬의 환원)

  • Shin Yong Chul;Paik Nam Won;Yi Gwang Yong;Lee Byung Kyu;Lee Ji Tae
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.1
    • /
    • pp.41-49
    • /
    • 2002
  • Recently, pilot studies showed an evidence of reduction of airborne hexavalent chromium, Cr(VI), on PVC filter during air sampling and storage. However, the information on this in the field was limited. Thus, we studied the reduction behaviors of airborne Cr(VI) on PVC filters during sampling and storage at three field electroplating operations. Regression between sampling time and the reduction (ratio of Cr(VI) to total Cr concentrations) was not statistically significant (p>0.05). However, the reductions in samples collected for 240 ~ 340 minutes were significantly higher than those for 30 - 60 minutes. On the other hand, another experiment showed a good correlation (r=0.96) between sampling time and the reduction without an exceptional value. Storage temperature was not a factor affecting the reduction of Cr(VI) collected on PVC filter. The loss of Cr(VI) samples stored in alkali solution (2% NaOH/3% Na$_2$CO$_3$) was significantly lower than that stored in vial according to NIOSH method (p<0.05). Thus, dipping Cr(VI) samples into alkali solution was a storage method to minimize tile reduction.

Concentration Characteristics of Airborne Hexavalent Chromium in the Industrial Area (산업단지 대기 중 6가 크롬 농도 특성에 관한 연구)

  • Kang, Byung-Wook;Han, Jin-Seok;Lee, Min-Do;Lee, Hak-Sung;Kim, Jong-Ho;Son, Eun-Seong;Baek, Sung-Ok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.3
    • /
    • pp.179-187
    • /
    • 2009
  • This paper describes the field evaluation of a sampling and analytical method for the quantity of airborne hexavalent chromium ($Cr^{6+}$) in the industrial areas, such as Sihwa and Banwol. Ambient measurements were performed by using the cellulose filter during the four seasons (October 2006 to June 2007). The determination of hexavalent chromium was carried out by ion chromatography. Performance validations, including method detection limit, relative standard deviation, and recovery percent, were also investigated. The mean concentrations of $Cr^{6+}$ in Sihwa and Banwol were 0.767 and 0.796 $ng/m^3$, respectively, which are similar to those of other foreign industrial areas. The seasonal variations of $Cr^{6+}$ levels were not quite different, which implies that the chromium was continuously emitted from the industrial sources throughout the year. The concentration variations between total chromium and $Cr^{6+}$ have also shown the similar pattern, suggesting that these components originate from the same sources. The concentration of $Cr^{6+}$ was found to be 0.7 to 2.4% of the total chromium. From these results, the approach using the cellulose filter may be suitable to collect $Cr^{6+}$ in the ambient air.

Worker Exposure Assessment on Airborne Total Chromium and Hexavalent Chromium by Process in Electroplating Factories (도금업체 공정별 근로자의 총크롬 및 6가 크롬 노출 평가)

  • Yi, Gwang Yong;Kim, Boowook;Shin, Yong Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.1
    • /
    • pp.89-94
    • /
    • 2015
  • Objectives: The objective of this study was to determine characteristics of workers' exposures to airborne total and hexavalent chromium by job title in electroplating processes. Methods: Total Cr was determined through a modified method based on NIOSH Method 7024. Airborne hexavalent Cr, Cr(VI), was sampled and extracted according to NIOSH Method 7600 and analyzed at 520 nm using an ion chromatograph/visible detector. Results: The geometric mean(GM) of total Cr concentrations from all factories was $11.2{\mu}g/m^3$(GSD=4.9). The GM of Cr(VI) concentrations from all factories was $2.84{\mu}g/m$ (GSD=5.2), and the concentrations among factories were significantly different (p<0.05). The Cr(VI) levels were lower than total Cr levels. Total Cr exposure levels were highest among buffing workers ($21.6{\mu}g/m^3$), but Cr(VI) levels were highest among plating workers($4.15{\mu}g/m^3$). The concentrations of Cr(VI) and total Cr from plating tasks was highly correlated(r=0.91). Conclusions: In the electroplating industry, plating workers were mainly exposed to Cr(VI), but others were not. Oxidation-reduction states of Cr and job titles should be considered in the exposure or risk assessments of chrome electroplating factories.