• Title/Summary/Keyword: Air-water flows

Search Result 169, Processing Time 0.021 seconds

Computation of Two-Fluid Flows with Submerged hydrofoil by Interface Capturing Method (접면포착법에 의한 수중익 주위의 이층류 유동계산)

  • 곽승현
    • Journal of Korean Port Research
    • /
    • v.13 no.1
    • /
    • pp.167-174
    • /
    • 1999
  • Numerical analysis of two-fluid flows for both water and air is carried out. Free-Surface flows with an arbitrary deformation have been simulated around two dimensional submerged hydrofoil. The computation is performed using a finite volume method with unstructured meshes and an interface capturing scheme to determine the shape of the free surface. The method uses control volumes with an arbitrary number of faces and allows cell-wise local mesh refinement. the integration in space is of second order based on midpoint rule integration and linear interpolation. The method is fully implicit and uses quadratic interpolation in time through three time levels The linear equation systems are solved by conjugate gradient type solvers and the non-linearity of equations is accounted for through picard iterations. The solution method is of pressure-correction type and solves sequentially the linearized momentum equations the continuity equation the conservation equation of one species and the equations or two turbulence quantities.

  • PDF

Study for a Secondary Air Affecting Fluid Flow in a Solid Waste Incinerator (쓰레기 소각로의 2차공기가 유동현상에 미치는 현상 연구)

  • Lee, Geum-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2924-2932
    • /
    • 1996
  • As the environmental pollution can be greatly reduced and the waste heat can be also recovered through a combustion of municipal solid waste, the incineration begins to be highlighted recently in our country. But it is very difficult to be operated with constant combustion conditions for a long time as the domestic waste is composed of various components, contains a large percentage of water, and has a low heating value. Therefore, the cold flow test and partial hot flow test were conducted in the incinerator by use of injection angles of a secondary air affecting fluid flow as the first action to maintain the optimum combustion conditions. A model to a scale of 1:10 was designed and manufactured through the similarity of model and prototype flows. Velocities and temperatures were measured through the experiment. From the results, fluid flows of secondary air obtained from partial hot flow test correspond almost well with those of main flow obtained from cold flow test. Consequently, injection angles of secondary air are proved to affect main flow decisively.

Simulation of Pressure Oscillation in Water Caused by the Compressibility of Entrapped Air in Dam Break Flow (댐 붕괴 유동에서 갇힌 공기의 압축성에 의한 물의 압력 진동 모사)

  • Shin, Sangmook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.1
    • /
    • pp.56-65
    • /
    • 2018
  • Pressure oscillation caused by the compressibility of entrapped air in dam break flow is analyzed using an open source code, which is a two-phase compressible code for non-isothermal immiscible fluids. Since compressible flows are computed based on a pressure-based method, the code can handle the equation of state of barotropic fluid, which is virtually incompressible. The computed time variation of pressure is compared with other experimental and computational results. The present result shows good agreements with other results until the air is entrapped. As the entrapped air bubbles pulsate, pressure oscillations are predicted and the pressure oscillations damp out quickly. Although the compressibility parameter of water has been varied for a wide range, it has no effects on the computed results, because the present equation of state for water is so close to that of incompressible fluid. Grid independency test for computed time variation of pressure shows that all results predict similar period of pressure oscillation and quick damping out of the oscillation, even though the amplitude of pressure oscillation is sensitive to the velocity field at the moment of the entrapping. It is observed that as pressure inside the entrapped air changes quickly, the pressure field in the neighboring water adjusts instantly, because the sound of speed is much higher in water. It is confirmed that the period of pressure oscillation is dominated by the added mass of neighboring water. It is found that the temperature oscillation of the entrapped air is critical to the quick damping out of the oscillations, due to the fact that the time averaged temperature inside the entrapped air is higher than that of surrounding water, which is almost constant.

Drag Reduction by Polymer and Surfactant in Tubulent Channel and Pipe Flows (난류 유동일때 관과 channel에서 고분자와 계면활성제에 의한 마찰저항 감소에 관한 연구)

  • Park, S.-R.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.359-365
    • /
    • 1995
  • The drag reduction phenomenon with an additives of surfactant(STAC, stearlytrimethyl ammonium chloride) and polymer(PEO, polyethlene oxide) was investigated in fully developed turbulent pipe and channel flows at various low Reynolds numbers as well as very low additives concentration. A maximum of 70% drag reduction compared with plain water flow was found. This maximum drag reduction percentage obtained with surfactant solution was slightly higher than that of the Virk's asymptote in polymer solution.

  • PDF

Two-fluid modelling for poly-disperse bubbly flows in vertical pipes: Analysis of the impact of geometrical parameters and heat transfer

  • Andrea Allio ;Antonio Buffo ;Daniele Marchisio;Laura Savoldi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1152-1166
    • /
    • 2023
  • The bubbly flow of air or steam in subcooled water are investigated here in several test cases, characterized by different pipe sizes, bubble dimensions and flow rates, by means of CFD using a Eulerian-Eulerian approach. The performance of models that differ for the turbulence closure in the continuous phase, as well as for the description of the lift force on the dispersed phase, are compared in detail. When air is considered, the space of the experimental parameters leading to a reasonable performance for the selected models are identified and discussed, while the issues left in the modelling of the concurrent condensation are highlighted for the cases where steam is used.

An Experimental Study on Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow (아음속 수직분사제트에서 액적크기 특성에 대한 실험적 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Kim, Jin-Ki;Hwang, Yong-Seok;Yoon, Young-Bin
    • Journal of ILASS-Korea
    • /
    • v.12 no.2
    • /
    • pp.115-122
    • /
    • 2007
  • The spray characteristics and drop size measurements have been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity, injection angle and atomize. internal flows were varied to provide of jet operation conditions. The injector internal flow was classified as three modes such as a non-cavitation flow, cavitation, and hydraulic flip flows. Pulsed Shadowgraph Photography measurement was used to determine the spatial distribution of the spray droplet diameter in a subsonic crossflow of air. And this study also obtains the SMD (Sauter Mean Diameters) distribution by using Planar Liquid Laser Induced Fluorescence technique. The objectives of this research are get a droplet distributions and drop size measurements of each condition and compare with the other flow effects. As the result, This research has been showned that droplet size were spatially dependent on air-stream velocity, fuel injection velocity, injection angle effects, and normalized distance from the injector exit length(x/d, y/d). There are also different droplet size characteristics between cavitation, hydraulic flip and the non-cavitation flows.

  • PDF

Drag Reduction Phenomena of Surfactant Turbulent Pipe Flows (계면활성제에 의한 난류 관내 유동의 마찰감소 현상)

  • Yoon, Hyung-Kee;Shin, Kwang-Ho;Chang, Ki-Chang;Ra, Ho-Sang;Yoo, Seong-Yeon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1025-1032
    • /
    • 2006
  • This is to characterize the fluid mechanics of surfactant water solutions, which exhibit drag reduction in the turbulent flow as compared to pure water. The emphasis is placed on those fluid characteristic aspects of drag reducing solutions which are relevant for application in closed circulation loops for the purpose of pumping power savings, like hydronic cooling and heating systems in buildings. The experiments are carried out with the solutions of the surfactant Beraid DR-IW 616 in concentration of $100{\sim}3,000ppm$. The following key parameters are focused in this study: surfactant concentration, solution temperature and pipe diameter.

Influence of a simple fracture intersection on density-driven multiphase flow

  • Seong-Hun, Ji;M.J., Nicholl;R.J., Glass;Gang-Geur, Lee
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.89-92
    • /
    • 2004
  • The influence of a single fracture intersection on density-driven immiscible flow is compared between wetting (water into air) and nonwetting (Trichloroethylene into water) flows. At low supply rates, the intersection acted as a hysteretic gate to pulsed flow of the wetting phase, but had minimal influence on nonwetting phase flow. For both cases, increasing the supply rate led to the formation of continuous fluid tendrils that crossed the intersection without interruption. The wetting experiment returned to pulsed flow as the supply rate was decreased, while the nonwetting experiment maintained a continuous flow structure. Results suggest a fundamental difference between wetting and nonwetting phase flows in fracture network.

  • PDF

Characteristics of Closed Circuit Cooling Tower with Multi Path on Cooling Water Inlet Conditions (냉각수 변화에 따른 멀티패스 밀폐식 냉각탑의 성능)

  • Shim, Gyu-Jin;Baek, Seung-Moon;Moon, Choon-Geun;Yoon, Jung-In;Kim, Eun-Pil;Kwon, O-Ick
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.597-602
    • /
    • 2008
  • The experiment of performance about closed-wet cooling tower(CWCT) was conducted in this study. The test section has the cooling water that flows from top part of a heat exchanger that has an entrance of cooling water with one and multi path. The heat exchanger consists of 15.88mm tubes with ten rows and ten columns and staggered arrangement. In this experiment, heat and mass transfer coefficients and range are calculated with variations of cooling water and path. The results indicated that operating CWCT using two path have the high values of heat and mass transfer coefficients and range than one path.

  • PDF

The Effect of Surrounding Gas Flow on the Heat Transfer of the Falling Film Flowing Down the Outside of a Vertical Tube (수직원관 외부 유하액막 열전달에 주변 기체유동이 미치는 영향)

  • 권경민;정시영;김병주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.996-1003
    • /
    • 2002
  • Heat transfer characteristics were investigated for the falling film flowing down the outside of an electrically heated vertical tube. Water was used for the falling film, and its Reynolds number was varied in the range of 70~500. Because water is heated and evaporated as it flows down, both sensible and latent heat transfer should be considered. The effect of the surrounding air movement was investigated by changing the direction of the air injection; without air injection, parallel-flow, and counter-flow. For all cases, sensible teat transfer rate was almost linearly increased with the increasing film flow rate. It was found that the film heat transfer coefficient was hardly influenced by the parallel air flow. However, the counter-flow of air reduced the heat transfer coefficient, which might be caused by the uneven distribution or flooding of the film. At high heat flux, a sudden change of the film heat transfer coefficient was detected as the film flow rate reached the transition value. It is supposed that this phenomenon was caused by the change in the film flow pattern.