• Title/Summary/Keyword: Air-to-Ground Ranging

Search Result 16, Processing Time 0.021 seconds

Method for Robust Ground Ranging Using Monopulse Radar in Heterogeneous Clutter Environment (모노펄스 레이다를 이용한 비균질 클러터 환경에서의 강건한 지면거리측정 방법)

  • Son, Jegyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.602-609
    • /
    • 2021
  • Aircraft radar has special function which is ranging from aircraft to ground of antenna boresight. Because ranging information is used to calibrate altitude of aircraft or to drop a conventional bomb, the measuring have to be precise and robust. Therefore, we propose a simple and efficient method using monopulse radar for ground ranging. Proposed method calculates balancing weight according to linearity of monopulse ratio and mixes two ranging measurements in proportional to the weight. By exploiting balancing weight, radar is able to react to various environment as monopulse ratio contains characteristics of clutter environment. As a result, robust ranging information can be achieved. We use DEM(Digital Elevation Model) in order to simulate heterogeneous environment. In experimental result, it is shown that proposed method shows better accuracy and precision in any environment.

A Study on the Dynamic Stability of Air-to-Ground Missile Using the Free Vibration Technique (자유진동기법을 이용한 공대지 미사일의 동안정성에 관한 연구)

  • 박재현;백승욱;조환기;허원욱
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.61-69
    • /
    • 1999
  • A dynamic stability test was performed to determine dynamic stability derivatives for the pure pitching motion of air-to-ground missile model in the low speed wind tunnel. The free vibration technique was employed to acquire oscillation characteristics of the model for damping coefficients. Damping coefficients are obtained by the method of logarithmic decrement. Results show good damping effects and stability capability at Mach numbers 0.1 and 0.2, with the angle of attack ranging from -15 to +20 degrees.

  • PDF

Updated Comparison Study of Extensive Air Shower Simulations with COSMOS and CORSIKA

  • Kim, Ji-Hee;Roh, Soon-Young;Ryu, Dong-Su
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.128.2-128.2
    • /
    • 2011
  • Experiments to study high-energy cosmic rays (CRs) employ Monte Carlo codes for extensive air shower (EAS) simulations to figure out the properties of CRs. COSMOS and CORSIKA among EAS simulation codes are currently being used to analyze the data of the Telescope Array experiment. We have generated a library of about 10,000 simulated EASs with the primary energy ranging from $10^{18.5}eV$ to $10^{20}eV$ and the zenith angle of primary particles ranging from 0 to 45 degree for proton and iron primaries. We have compared the results predicted by CORSIKA and COSMOS under the same condition. In this talk, we show the differences in the energy spectra at the ground, the longitudinal shower profile as a function of atmospheric depth, the Calorimetric energy, and the Xmax distribution. We also discuss the lateral distribution function obtained from GEANT4 simulations which is being used to measure the detector response.

  • PDF

Comparison Study of Extensive Air Shower Simulations with COSMOS and CORSIKA

  • Roh, Soon-Young;Kim, Ji-Hee;Ryu, Dong-Su
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.70.2-70.2
    • /
    • 2011
  • Ultra-high energy cosmic rays(UHECRs) refer cosmic rays with energy above 1018eV. UHECR experiments have employed air shower simulations to quantify the properties of cosmic rays. Using COSMOS and CORSIKA, we have produced a library of over 15000 thinned extensive air shower(EAS) simulations with the primary energies ranging from 1018.5eV to 1020eV and the zenith angle of primary cosmic ray particles from 0 to 45 for proton and iron primaries. We have compared the results from CORSIKA and COSMOS. The comparison has shown perceptible differences in the ground distributions, longitudinal distributions, Calorimetric energy, and Xmax distributions. We have also measured the detector response evaluated using GEANT4 simulations. Here, we discuss S(800), i.e. the signal at a distance of 800 m from the shower core, as the primary energy estimator and present the lateral distribution function(LDF) with S(800).

  • PDF

Virtual Ground Based Augmentation System

  • Core, Giuseppe Del;Gaglione, Salvatore;Vultaggio, Mario;Pacifico, Armando
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.33-37
    • /
    • 2006
  • Since 1993, the civil aviation community through RTCA (Radio Technical Commission for Aeronautics) and the ICAO (International Civil Air Navigation Organization) have been working on the definition of GNSS augmentation systems that will provide improved levels of accuracy and integrity. These augmentation systems have been classified into three distinct groups: Aircraft Based Augmentation Systems (ABAS), Space Based Augmentation Systems (SBAS) and Ground Based Augmentation Systems (GBAS). The last one is an implemented system to support Air Navigation in CAT-I approaching operation. It consists of three primary subsystems: the GNSS Satellite subsystem that produces the ranging signals and navigation messages; the GBAS ground subsystem, which uses two or more GNSS receivers. It collects pseudo ranges for all GNSS satellites in view and computes and broadcasts differential corrections and integrity-related information; the Aircraft subsystem. Within the area of coverage of the ground station, aircraft subsystems may use the broadcast corrections to compute their own measurements in line with the differential principle. After selection of the desired FAS for the landing runway, the differentially corrected position is used to generate navigation guidance signals. Those are lateral and vertical deviations as well as distance to the threshold crossing point of the selected FAS and integrity flags. The Department of Applied Science in Naples has create for its study a virtual GBAS Ground station. Starting from three GPS double frequency receivers, we collect data of 24h measures session and in post processing we generate the GC (GBAS Correction). For this goal we use the software Pegasus V4.1 developed from EUROCONTROL. Generating the GC we have the possibility to study and monitor GBAS performance and integrity starting from a virtual functional architecture. The latter allows us to collect data without the necessity to found us authorization for the access to restricted area in airport where there is one GBAS installation.

  • PDF

Energy spectrum of particles arriving at the ground and S(800) determination by Monte Carlo simulation for Telescope Array

  • Kim, Ji-Hee;Roh, Soon-Young;Ryu, Dong-Su;Kang, Hye-Sung;Kasahara, Katuaki;Kido, Eiji;Taketa, Akimichi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.58.1-58.1
    • /
    • 2010
  • Telescope Array (TA) experiment in Utah, USA, observes ultrahigh-energy cosmic rays (UHECRs); UHECRs refer cosmic rays with energy above $10^{18}eV$. Using COSMOS and CORSIKA, we have produced a library of over 1000 thinned extensive air shower (EAS) simulations with the primary energies ranging from $10^{18.5}eV$ to $10^{20.25}eV$ and the zenith angle of primary cosmic ray particle from $0^{\circ}$ to $45^{\circ}$. Here, we present the energy spectrum of particles arriving at the ground. We have also calculated the detector response evaluated using GEANT4 simulations. Here, we discuss S(800), i.e. the signal at a distance of 800 m from the shower core, as the primary energy estimator.

  • PDF

Enhancing air traffic management efficiency through edge computing and image-aided navigation

  • Pradum Behl;S. Charulatha
    • Advances in aircraft and spacecraft science
    • /
    • v.11 no.1
    • /
    • pp.33-53
    • /
    • 2024
  • This paper presents a comprehensive investigation into the optimization of Flight Management Systems (FMS) with a particular emphasis on data processing efficiency by conducting a comparative study with conventional methods to edge-computing technology. The objective of this research is twofold. Firstly, it evaluates the performance of FMS navigation systems using conventional and edge computing methodologies. Secondly, it aims to extend the boundaries of knowledge in edge-computing technology by conducting a rigorous analysis of terrain data and its implications on flight path optimization along with communication with ground stations. The study employs a combination of simulation-based experimentation and algorithmic computations. Through strategic intervals along the flight path, critical parameters such as distance, altitude profiles, and flight path angles are dynamically assessed. Additionally, edge computing techniques enhance data processing speeds, ensuring adaptability to various scenarios. This paper challenges existing paradigms in flight management and opens avenues for further research in integrating edge computing within aviation technology. The findings presented herein carry significant implications for the aviation industry, ranging from improved operational efficiency to heightened safety measures.

The Distribution Frost Penetration Depth and Relationship between Frost Penetration and Freezing Index in South Korea (전국(全國) 동결(凍結)깊이 분포(分布)와 동결깊이 및 동결지수(凍結指數)와의 상관관계(相關關係))

  • Kim, Sang Kyu;Park, Sang Kil;Park, Bang Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.79-90
    • /
    • 1990
  • The National Construction Research Institute of Korea has measured the depth of the frozen ground covering all the areas of South Korea during ten years ranging through 1980. The measurements were made for the frozen ground at random but intended for the most frost-susceptible soils. The soils of the frozen ground were sampled and then classifide into four groups according to the frost design soil classification system suggested by the Corps of Engineers of the United States. The contours of the maximum depth of the frost penetration are drawn on a map with data collected during the ten years. Also isolines of the design frezing index are shown on an another map using the metorological information of 1980-1989 and compared whth those in vestigated in 1980 by Highway Survey Team of the Ministry of Construction, Korea. It is known that the maximum depth of the frost penetration is related to freezing index values. An empirical formula expressing the relation is suggsted, in which the depth is proportional to the one-third power of the air freezing index values.

  • PDF

Improvement of Air Temperature Analysis by Precise Spatial Data on a Local-scale - A Case Study of Eunpyeong New Town in Seoul - (상세 공간정보를 활용한 국지기온 분석 개선 - 서울 은평구 뉴타운을 사례로 -)

  • Yi, Chae-Yeon;An, Seung-Man;Kim, Kyu-Rang;Choi, Young-Jean;Scherer, Dieter
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.144-158
    • /
    • 2012
  • A higher spatial resolution is preferable to support the accuracy of detailed climate analysis in urban areas. Airborne LiDAR (Light Detection And Ranging) and satellite (KOMPSAT-2, Korea Multi-Purpose Satellite-2) images at 1 to 4 m resolution were utilized to produce digital elevation and building surface models as well as land cover maps at very high(5m) resolution. The Climate Analysis Seoul(CAS) was used to calculate the fractional coverage of land cover classes in built-up areas and thermal capacity of the buildings from their areal volumes. It then produced analyzed maps of local-scale temperature based on the old and new input data. For the verification of the accuracy improvement by the precise input data, the analyzed maps were compared to the surface temperature derived from the ASTER satellite image and to the ground observation at our detailed study region. After the enhancement, the ASTER temperature was highly correlated with the analyzed temperature at building (BS) areas (R=0.76) whereas there observed no correlation with the old input data. The difference of the air temperature deviation was reduced from 1.27 to 0.70K by the enhancement. The enhanced precision of the input data yielded reasonable and more accurate local-scale temperature analysis based on realistic surface models in built-up areas. The improved analysis tools can help urban planners evaluating their design scenarios to be prepared for the urban climate.

Evaluation of the Wet Bulb Globe Temperature (WBGT) Index for Digital Fashion Application in Outdoor Environments

  • Kwon, JuYoun;Parsons, Ken
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.23-36
    • /
    • 2017
  • Objective: This paper presents a study to evaluate the WBGT index for assessing the effects of a wide range of outdoor weather conditions on human responses. Background: The Wet Bulb Globe Temperature (WBGT) index was firstly developed for the assessment of hot outdoor conditions. It is a recognised index that is used world-wide. It may be useful over a range of outdoor conditions and not just for hot climates. Method: Four group experiments, involving people performing a light stepping activity, were conducted to determine human responses to outside conditions in the U.K. They were conducted in September 2007 (autumn), December 2007 (winter), March 2008 (spring) and June 2008 (summer). Environmental measurements included WBGT, air temperature, radiant temperature (including solar load), humidity and wind speed all measured at 1.2m above the ground, as well as weather data measured by a standard weather station at 3m to 4m above the ground. Participants' physiological and subjective responses were measured. When the overall results of the four seasons are considered, WBGT provided a strong prediction of physiological responses as well as subjective responses if aural temperature, heart rate and sweat production were measured. Results: WBGT is appropriate to predict thermal strain on a large group of ordinary people in moderate conditions. Consideration should be given to include the WBGT index in warning systems for a wide range of weather conditions. However, the WBGT overestimated physiological responses of subjects. In addition, tenfold Borg's RPE was significantly different with heart rate measured for the four conditions except autumn (p<0.05). Physiological and subjective responses over 60 minutes consistently showed a similar tendency in the relationships with the $WBGT_{head}$ and $WBGT_{abdomen}$. Conclusion: It was found that either $WBGT_{head}$ or $WBGT_{abdomen}$ could be measured if a measurement should be conducted at only one height. The relationship between the WBGT values and weather station data was also investigated. There was a significant relationship between WBGT values at the position of a person and weather station data. For UK daytime weather conditions ranging from an average air temperature of $6^{\circ}C$ to $21^{\circ}C$ with mean radiant temperatures of up to $57^{\circ}C$, the WBGT index could be used as a simple thermal index to indicate the effects of weather on people. Application: The result of evaluation of WBGT might help to develop the smart clothing for workers in industrial sites and improve the work environment in terms of considering workers' wellness.