• Title/Summary/Keyword: Air-pressure control

Search Result 751, Processing Time 0.025 seconds

Developing a Pressure Control Valve for Air Extraction Cupping Device (부항 장치용 압력 제어 밸브 개발)

  • Lee, Jae Yong;Shim, Dong Wook;An, Soo Kwang;Kim, Eun Seok;Lee, Byung Ryul;Yang, Gi Young
    • Korean Journal of Acupuncture
    • /
    • v.38 no.4
    • /
    • pp.308-316
    • /
    • 2021
  • Objectives : This study aimed to develop a cupping pressure control valve for limiting maximum negative pressure while achieving clinical therapeutic outcomes to minimize side effects induced by excessive negative pressure of air extraction cupping devices. Methods : To determine the clinical necessity and suitability of the cupping pressure control valve, this study was designed to measure the change in pressure with or without the valve using both a manual and an electric suction pump. Results : While the maximum pressure was limited by the pressure control valve, the pressure did not increase above a certain level regardless of the type of manual or electric pump. Conclusions : This study will contribute to the development of a safer and more effective base technology for cupping treatment in oriental medicine.

A Study on Pump Down Operation Performance of Refrigerator (냉동기 펌프다운 운전성능에 관한 연구)

  • Kim, Chul-Soo;Chung, Han-Shik;Jeong, Hyo-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.12
    • /
    • pp.964-970
    • /
    • 2006
  • Vapor compression refrigerators have much critical variables such as the controls of temperature and pressure switches, control durations and operating hours of electronic valves. This study compares and analyzes the data which is obtained from system controlling of the evaporation temperatures which are generally used in automatic pump down operating systems. Through this study, the automatic evaporation control operation system will be more ideal for the system to keep the proper temperature distribution depending on the purpose of evaporation side. The automatic pump down control operation is more appropriate for the system to aim at the effective use of evaporation side without using the temperature difference. And this test will be proved that the changes at the low pressure side didn't have significant impacts on the high pressure side.

The Development of Check equipment Maintaining air pressure constantly for Automobile (자동차용 공기압을 일정하게 유지하는 검사 장치의 개발)

  • Kim, Seok-Hyun
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2009.05a
    • /
    • pp.184-189
    • /
    • 2009
  • The Measurement system of auto parts are currently precious ones in the case of most of them. In this paper We tried to implement low_cost equipment. There are many auto parts. Among them CCP(Canister Controlled Purge Solenoid) which have difficulties in the control of air fluid currently have been main object. According to the use of air amount. Required time to maintain vacuum air pressure constantly need three or four minutes but the aim of this development try to achieve keeping vacuum pressure within less shorter time, Under the constant air pressure, We try to develop control check system of auto parts CCP(Canister Controlled Purge Solenoid).

  • PDF

The High-side Pressure Setpoint Algorithm of a $CO_2$ Automotive Air Conditioning System by using a Lagrange Interpolation Method and a Neural Network (라그랑즈 보간법과 신경망을 이용한 $CO_2$ 자동차에어컨시스템의 고압설정알고리즘)

  • Han, Do-Young;Noh, Hee-Jeon
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.29-33
    • /
    • 2007
  • In order to protect the environment from the refrigerant pollution, the $CO_2$ may be regarded as one of the most attractive alternative refrigerants for an automotive air-conditioning system. Control methods for a $CO_2$ system should be different because of $CO_2$'s unique properties as a refrigerant. Especially, the high-side pressure of a $CO_2$ system should be controlled for the effective operation of the system. In this study, the high-side pressure setpoint algorithm was developed by using a neural network and a Lagrange interpolation method. These methods were compared. Simulation results showed that a Lagrange interpolation method was more effective than a neural network in the respect of its easiness of programming and shorter execution time.

  • PDF

A Study on Chargin and Discharging Characteristics of Variable Volume with Compressed Air (가변체적내의 압축공기 충진 및 방출특성연구)

  • Kim, Dong-Soo;Kim, Hyoung-Eui;Park, Jae-Bum;Kang, Bo-Sig;Sung, Baek-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.125-131
    • /
    • 1995
  • Pneumatic System has been mainly used as main equipment for actuation and control of fluid force in manufacturing industry. For velocity control of piston, meter-out restriction method is used in many cases. In this systems, meter-out restriction method is adopted for analysing the Dynamic Charging and Discharging Process which is Variable Volume Chamber. Experiments has been conducted for different supply pressure condition. As a experimental result, charge side chamber pressure rises to supply pressure rapidily and discharge side chamber pressure decreases. Also, when the air in the cylinder is discharged, tempdrature of air decreases steeply. Restriction of the Cylinder sometimes freeze and it dose not function. The result will be useful for the analysis of pneumatic system.

  • PDF

A Study on the Design of Back Pressure for Automotive Scroll Compressor

  • Koo, In-Hwe;Lee, Geon-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • The optimum design of back pressure chamber is one of the most important factors in designing scroll compressors because it has a great influence on the efficiency and other design parameters. The design process can be divided into 2 parts. One is obtaining the optimum pressure of the chamber and keeping it in constant value. The other is finding out the minimum inflow rate of medium with which back pressure chamber is filled. In this study we are focused on the first step. At first we added a simple structure that can change back pressure without reassembling compressor. It makes possible to obtaining optimum back pressure. Then we designed an equipment that the back pressure control valve assembly could be independently tested with. Spring was redesigned to decrease stiffness variation. Also sealing mechanism of back pressure control valve was improved to more effective way. As a result, it was verified that in a real mode test back pressure variation could be retained in 2.3% with discharge pressure and operating frequency varied. In addition the integrated structure of back pressure control valve is expected to contribute to effective manufacturing process.

A Flow Quantity Distribution Characteristics of the Hot Water Header for Individual Room Control System (실별제어 온수분배기의 유량분배 특성)

  • Sung, Sun-Kyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.3
    • /
    • pp.175-180
    • /
    • 2008
  • Flow quantity to supply to a coil in floor heating system is important to achieve comfortable indoor air condition in the winter season. The hot water header is used to distribute the water into the coil. Experimental study has been performed using the water header that have 5 branches consisted of flow control valves and automatic shut-off valves. Each branch line connected it with X-L pipe. Experimental tests accomplished it to investigate the flow distribution characteristics of the hot water header. Experimental results show that the selection of the pump head and differential pressure are very important to save running energy of the system, and high differential pressure needs more friction loss in the case of suitable differential pressure for balancing of the header.

Development of Optimum High Pressure Algorithm for a Transcritical $CO_2$ Mobile Air-Conditioning System ($CO_2$ 자동차 에어컨 시스템의 최적 고압 설정 알고리즘 개발에 관한 연구)

  • Lee, Jong-Bong;Lee, Jun-Kyoung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.159-165
    • /
    • 2008
  • This paper deals with the optimum high pressure control algorithm for a transcritical $CO_2$ mobile air-conditioning system with belt-driven compressor to achieve the maximum COP. The experiments were performed to find out the maximum COP conditions with various operating conditions. The experimental results showed that the COP was increased and then decreased with increase of the refrigerant high pressure for the system. Therefore the value of high pressure which has maximum COP could be selected. Furthermore, the strong (linear) relation between the optimum high pressure and the gas cooler outlet temperature was revealed, which suggests the use of a simple controller with only one parameter for the transcritical $CO_2$ cycle.

Estimation of Inlet Air Mass Flow for Air-Fuel Raito Control of Gaseous-Fuel Engines (기체연료 엔진에서 공연비제어를 위한 흡입공기량 추정)

  • 심한섭;이강윤;선우명호;송창섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.131-139
    • /
    • 2001
  • Highly accurate control of the air-fuel ratio is important to reduce exhaust gas emissions of the gaseous-fuel engines. In order to achieve this purpose, inlet air mass flow must be measured exactly, and precise engine models are necessary to design engine control systems. In this paper, the effects of water vapor and gaseous fuel that change the air mass flow are studied. The effective air mass ratio is defined as the air mass flow divided by the mixture mass flow, and also it is applied to the estimation of the inlet air mass flow. The presence of the gaseous fuel and the water vapor in the mixture reduces the air partial pressure and the effective air mass ratio of the gaseous-fuel engines. The Experimental results for an LPG engine show that the estimation of the inlet ai mass flow based upon the effective air mass ratio is more accurate than that of the normal air mass flow.

  • PDF

A New Flow Control Technique for Handling Infinitesimal Flows Inside a Lab-On-a-Chip (랩온어칩 내부 미세유동제어를 위한 새로운 유동제어기법)

  • Han, Su-Dong;Kim, Guk-Bae;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.110-116
    • /
    • 2006
  • A syringe pump or a device using high electric voltage has been used for controlling flows inside a LOC (lab-on-a-chip). Compared to LOC, however, these microfluidic devices are large and heavy that they are burdensome for a portable ${\mu}-TAS$ (micro total analysis system). In this study, a new flow control technique employing pressure regulators and pressure chambers was developed. This technique utilizes compressed air to control the micro-scale flow inside a LOC, instead of a mechanical actuator or an electric power supply. The pressure regulator controls the output air pressure by adjusting the variable resistor attached. We checked the feasibility of this system by measuring the flow rate inside a capillary tube of $100{\mu}m$ diameter in the Re numbers ranged from 0.5 to 50. In addition, the performance of this flow control system was compared with that of a conventional syringe pump. The developed flow control system was found to show superior performance, compared with the syringe pump. It maintains automatically the: air pressure inside a pressure chamber whether the flow inside the capillary tube is on or off. Since the flow rate is nearly proportional to the resistance, we can control flow in multiple microchannels precisely. However, the syringe pump shows large variation of flow rate when the fluid flow is blocked in the microchannel.