• Title/Summary/Keyword: Air-core

Search Result 744, Processing Time 0.032 seconds

The Effect of Turbulence Penetration on the Thermal Stratification Phenomenon Caused by Leaking Flow in a T-Branch of Square Cross-Section (난류침투가 사각단면 T분기관 내 누설유동에 의해 발생한 열성층 현상에 미치는 영향)

  • 홍석우;최영돈;박민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.3
    • /
    • pp.239-245
    • /
    • 2003
  • In the nuclear power plant, emergency core coolant system (ECCS) is furnished at reactor coolant system (RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, thermal stratification phenomenon can occur due to coolant leaking in the check valve. The thermal stratification produces excessive thermal stresses at the pipe wall so as to yield thermal fatigue crack (TFC) accident. In the present study, effects of turbulence penetration on the thermal stratification into T-branches with square cross-section in the modeled ECCS are analysed numerically. $textsc{k}$-$\varepsilon$ model is employed to calculate the Reynolds stresses in momentum equations. Results show that the length and strength of thermal stratification are primarily affected by the leak flow rate of coolant and the Reynolds number of the main flow in the duct. Turbulence penetration into the T-branch of ECCS shows two counteracting effects on the thermal stratification. Heat transport by turbulence penetration from the main duct to leaking flow region may enhance thermal stratification while the turbulent diffusion may weaken it.

Development of Rotary VCM type Actuator for Small Form Factor ODD (초소형 ODD 용 로터리 VCM 타입 엑추에이터 개발)

  • Kim, Yoon-Ki;Kim, Sa-Ung;Lee, Dong-Joo;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.672-675
    • /
    • 2006
  • It is becoming more significant to develop a rotary VCM type actuator for small form factor ODD, as portables are getting more and more popularized nowadays. In this paper, the procedure of development of the actuator which is applicable to compact flash II card and is fit in the specification of BD 1X is explained. This is based on the rotary VCM type actuator, which is good for reducing thickness. Air core solenoid coil is used in order to do focusing mechanism. And the total weight is reduced by using the structure of steel-aluminium-steel triple layer, so, the stiffness is still adequate. Additionally, the tracking coil is moved next to the actuator, so the total length was reduced, then the actuator become applicable to compact flash II card. The force of Magnetic Circuit is improved by using Magnetic Circuit DOE. And flexible mode frequency improved through the DOE of structure part. Modeling was exactly done in consideration of air core solenoid coil and pivot bearing. It is confirmed that the designed model is satisfied with the specification of BD 1X and is applicable to Compact Flash II card.

  • PDF

The Melting Process in an Ice-Ball Capsule (아이스볼내의 융해과정에 대한 해석)

  • Suh, J.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.577-588
    • /
    • 1995
  • A numerical study is made on the melting process of an unconstrained ice inside an isothermal ice-ball capsule. The unmelted ice core is continuously ascending on account of buoyancy forces. Such a buoyancy-assisted melting is commonly characterized by the existence of a thin liquid film above the ice core. The present study is motivated to present a full-equation-based analysis of the influences of the initial subcooling and the natural convection on the fluid flow associated with the buoyancy-assisted melting. In the light of the solution strategy, the present study is substantially distinguished from the existing works in that the complete set of governing equations in both the melted and unmelted regions are resolved in one domain. Numerical results are obtained by varying the wall temperature and initial temperature. The present results reported the transition of the flow pattern in a spherical capsule, as the wall temperature was increased over the density inversion point. In addition, time wise variation of the shapes for the liquid film and the lower ice surface, the time rate of change in the melt volume fraction and the melting distance at symmetric line is analyzed and is presented.

  • PDF

A Study on the High Speed Interruption of Parallel Arcing (병렬아크의 고속차단에 관한 연구)

  • Kil, Gyung-Suk;Ji, Hong-Keun;Park, Dae-Won;Kim, Il-Kwon;Kim, Young-Il;Cho, Young-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.95-100
    • /
    • 2008
  • Conventional Earth Leakage Circuit Breakers (ELCBs) have defects of a breaking failure or a long breaking-time against parallel arc current. In this paper, breaking characteristics of conventional ELCBs were analyzed by simulation of parallel arc in a low-voltage indoor wiring system, and an air-core current sensor and a signal converter being most available for parallel arc detection were developed and applied to a conventional ELCB. The proposed tripped the ELCB regardless of the location of parallel arc. The breaking-time was in ranges of $1.74{\sim}8.3[ms]$ depending on the phase of arc generation, which is about 5 times as fast as conventional ELCBs with the breaking-time of 50[ms].

Numerical analysis of the temperature distribution of the EM pump for the sodium thermo-hydraulic test loop of the GenIV PGSFR

  • Kwak, Jaesik;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1429-1435
    • /
    • 2021
  • The temperature distribution of an electromagnetic pump was analyzed with a flow rate of 1380 L/min and a pressure of 4 bar designed for the sodium thermo-hydraulic test in the Sodium Test Loop for Safety Simulation and Assessment-Phase 1 (STELLA-1). The electromagnetic pump was used for the circulation of the liquid sodium coolant in the Intermediate Heat Transport System (IHTS) of the Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR) with an electric power of 150 MWe. The temperature distribution of the components of the electromagnetic pump was numerically analyzed to prevent functional degradation in the high temperature environment during pump operation. The heat transfer was numerically calculated using ANSYS Fluent for prediction of the temperature distribution in the excited coils, the electromagnet core, and the liquid sodium flow channel of the electromagnetic pump. The temperature distribution of operating electromagnetic pump was compared with cooling of natural and forced air circulation. The temperature in the coil, the core and the flow gap in the two conditions, natural circulation and forced circulation, were compared. The electromagnetic pump with cooling of forced circulation had better efficiency than natural circulation even considering consumption of the input power for the air blower. Accordingly, this study judged that forced cooling is good for both maintenance and efficiency of the electromagnetic pump.

Multi-Core Fiber Based Fiber Bragg Gratings for Ground Based Instruments

  • Min, Seong-Sik;Lindley, Emma;Leon-Saval, Sergio;Lawrence, Jon;Bland-Hawthorn, Joss
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.53.2-53.2
    • /
    • 2015
  • Fiber Bragg gratings (FBGs) are the most compact and reliable method of suppressing atmospheric emission lines in the infrared for ground-based telescopes. It has been proved that real FBGs based filters were able to eliminate 63 bright sky lines with minimal interline losses in 2011 (GNOSIS). Inscribing FBGs on multi-core fibers offers advantages. Compared to arrays of individual SMFs, the multi-core fiber Bragg grating (MCFBG) is greatly reduced in size, resistant to damage, simple to fabricate, and easy to taper into a photonics lantern (PRAXIS). Multi-mode fibers should be used and the number of modes has to be large enough to capture a sufficient amount of light from the telescope. However, the fiber Bragg gratings can only be inscribed in the single-mode fiber. A photonic lantern bi-directionally converts multi-mode to single-mode. The number of cores in MCFBGs corresponds to the mode. For a writing system consisting of a single ultra-violet (UV) laser and phase mask, the standard writing method is insufficient to produce uniform MCFBGs due to the spatial variations of the field at each core within the fiber. Most significant technical challenges are consequences of the side-on illumination of the fiber. Firstly, the fiber cladding acts as a cylindrical lens, narrowing the incident beam as it passes through the air-cladding interface. Consequently, cores receive reduced or zero illumination, while the focusing induces variations in the power at those that are exposed. The second effect is the shadowing of the furthest cores by the cores nearest to the light source. Due to a higher refractive index of cores than the cladding, diffraction occurs at each core-cladding interface as well as cores absorb the light. As a result, any core that is located directly behind another in the beam path is underexposed or exposed to a distorted interference pattern from what phase mask originally generates. Technologies are discussed to overcome the problems and recent experimental results are presented as well as simulation results.

  • PDF

Synthesis of Core-shell Copper nanowire with Reducible Copper Lactate Shell and its Application

  • Hwnag, Hyewon;Kim, Areum;Zhong, Zhaoyang;Kwon, Hyeokchan;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.430.1-430.1
    • /
    • 2016
  • We present the concept of reducible fugitive material that conformally surrounds core Cu nanowire (NW) to fabricate transparent conducting electrode (TCE). Reducing atmosphere can corrodes/erodes the underlying/surrounding layers and might cause undesirable reactions such impurity doing and contamination, so that hydrogen-/forming gas based annealing is impractical to make device. In this regards, we introduce novel reducible shell conformally surrounding indivial CuNW to provide a protection against the oxidation when exposed to both air and solvent. Uniform copper lactate shell formation is readily achievable by injecting lactic acid to the CuNW dispersion as the acid reacts with the surface oxide/hydroxide or pure copper. Cu lactate shell prevents the core CuNW from the oxidation during the storage and/or film formation, so that the core-shell CuNW maintains without signficant oxidation for long time. Upon simple thermal annealing under vacuum or in nitrogen atmosphere, the Cu lactate shell is easily decomposed to pure Cu, providing an effective way to produce pure CuNW network TCE with typically sheet resistance of $19.8{\Omega}/sq$ and optical transmittance of 85.5% at 550 nm. Our reducible copper lactate core-shell Cu nanowires have the great advantage in fabrication of device such as composite transparent electrodes or solar cells.

  • PDF

Analytical Study on Equivalent Shear Modulus according to Shape of Egg-box Core (에그-박스 코어 형상 변화에 따른 등가 전단 탄성계수 수치 해석 연구)

  • Lee, SangYoun;Yun, Su-Jin;Park, DongChang;Hwang, Kiyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.73-79
    • /
    • 2014
  • The sandwich shell with Egg-box core has been used for the combustion chamber case of air breathing propulsion system. The alteration on pitch length and thickness of Egg-box core was required to be lighter and save manufacturing time and cost of combustion chamber case. In this paper, the finite element analysis method which simulated bending test was used to predict the equivalent shear modulus which affect structural stability of sandwich shell in short time. The result of FE calculation on sandwich panel with homogeneous material, H130-foam core, showed a good agreement with the values available in the reference. The equivalent shear modulus of Egg-box core according to the variation of pitch length and thickness can be obtained.

Three-Dimensional Skin Tissue Printing with Human Skin Cell Lines and Mouse Skin-Derived Epidermal and Dermal Cells

  • Jin, Soojung;Oh, You Na;Son, Yu Ri;Kwon, Boguen;Park, Jung-ha;Gang, Min jeong;Kim, Byung Woo;Kwon, Hyun Ju
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.238-247
    • /
    • 2022
  • Since the skin covers most surfaces of the body, it is susceptible to damage, which can be fatal depending on the degree of injury to the skin because it defends against external attack and protects internal structures. Various types of artificial skin are being studied for transplantation to repair damaged skin, and recently, the production of replaceable skin using three-dimensional (3D) bioprinting technology has also been investigated. In this study, skin tissue was produced using a 3D bioprinter with human skin cell lines and cells extracted from mouse skin, and the printing conditions were optimized. Gelatin was used as a bioink, and fibrinogen and alginate were used for tissue hardening after printing. Printed skin tissue maintained a survival rate of 90% or more when cultured for 14 days. Culture conditions were established using 8 mM calcium chloride treatment and the skin tissue was exposed to air to optimize epidermal cell differentiation. The skin tissue was cultured for 14 days after differentiation induction by this optimized culture method, and immunofluorescent staining was performed using epidermal cell differentiation markers to investigate whether the epidermal cells had differentiated. After differentiation, loricrin, which is normally found in terminally differentiated epidermal cells, was observed in the cells at the tip of the epidermal layer, and cytokeratin 14 was expressed in the lower cells of the epidermis layer. Collectively, this study may provide optimized conditions for bioprinting and keratinization for three-dimensional skin production.

Construction of Current Sensor Using Hall Sensor and Magnetic Core for the Electric and Hybrid Vehicle (홀소자와 자기코어를 이용한 하이브리드 및 전기자동차용 전류센서 제작)

  • Yeon, Kyoheum;Kim, Sidong;Son, Derac
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.2
    • /
    • pp.49-53
    • /
    • 2013
  • A current sensor is one of important component which is used for the electrical current measurement during charge and discharge of the battery, and monitoring system of the motor controller in the electric and hybrid vehicle. In this study, we have developed an open loop type current sensor using GaAs Hall sensor and magnetic core has an air gap. The Hall sensor detect magnetic field produced by the current to be measured. The 3 mm air gap core was made by HGO electrical steel sheets after slitting, winding, annealing, molding, and cutting. Developed current sensor shows 0.03 % linearity within DC current range from -400 A to +400 A. Operating temperature range was extended to the range of $-40{\sim}105^{\circ}C$ using temperature compensating electronic circuit. To Improve frequency bandwidth limit due to the air flux of PCB (Printed Circuit Board) and Hall sensor, We employed an air flux compensating loop near Hall sensor or on PCB. Frequency bandwidth of the sensor was 100 kHz when we applied sine wave current of $40A{\cdot}turn$ in the frequency range from 100 Hz to 100 kHz. For the dynamic response time measurement, 5 kHz square wave current of $40A{\cdot}turn$ was applied to the sensor. Response time was calculated time reach to 90 % of saturation value and smaller than $2{\mu}s$.