• Title/Summary/Keyword: Air-cooled

Search Result 556, Processing Time 0.032 seconds

Enhancement of combustion efficiency of a air-cooled combustor system with single F.D. Fan Using CFD (전산유체역학을 이용한 단일 송풍기가 적용된 공냉식 연소설비의 효율개선)

  • Kim, Min-Choul;Shon, Byung-Hyun;Lee, Jae-Jeong;Park, Hung-Suck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.460-468
    • /
    • 2021
  • This study investigated the enhanced combustion efficiency of an "air-cooled combustion system" with single F.D. fan, and performed a numerical analysis for the operation and design conditions to increase the combustion efficiency. The combustion efficiency in an actual combustor was compared before and after the structure modification. Numerical analysis for application of a single fan revealed the difficulty of forming a turbulence for circular combustion conditions. This is because the supply ratio of combustion air supplied into 2 flow paths becomes irregular in the combustion furnace due to a change in friction force and pressure in each flow path. Subsequently, two methods of supplying air into the combustion furnace were analyzed numerically to obtain the optimal combustion conditions of an air-cooled combustion system. The first method involved injecting the preheated combustion air after a 180~360 degree rotation from the outer wall, whereas in the second method, the combustion air was injected into the combustion furnace in a tangential direction after primary heat exchange outside the combustion furnace, by applying a rotatable vane structure in the combustion furnace. Results reveal that application of a single F.D. fan to the air injection into a rotatable combustion furnace is desirable for optimization of the combustion conditions for applying a duct structure having a dual cooling wall for the cooling of the outer wall of the combustion furnace, and for maintaining perfect mixing in the combustion furnace. We therefore confirmed enhanced combustion efficiency by comparing the actual combustion efficiency before and after structure modification.

A Study on the Correlation between Outdoor Air and Outlet Air Temperature in a Fresh Air Load Reduction System by Using Geothermal Energy (지열을 이용한 외기부하저감시스템의 외기온도와 출구온도의 상관관계 분석)

  • Son, Won-Tug;Park, Kyung-Soon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.9
    • /
    • pp.620-627
    • /
    • 2010
  • This paper presents a feasibility study of a fresh air load reduction system by using an underground double floor space. The fresh air is introduced into the double slab space and passes through the opening bored into the footing beam. The air is cooled by the heat exchange with the inside surface of the double slab space in summer, and heated in winter. This system not only reduces sensible heat load of the fresh air by heat exchange with earth but also reduces latent heat load of the fresh air by ad/de-sorption of underground double slab concrete. In this paper, we investigated the correlation between outdoor air temperature and outlet air temperature in the system. In conclusion, from the results of the high correlation we proposed a equation of regression for the outlet air temperature in the system by using linear regression analysis.

A Study on Heat and Mass Transfer in a Vertical Tube Absorber Using LiBr Family Solutions (LiBr계 용액을 사용한 수직관 흡수기의 열 및 물질 전달에 관한 연구)

  • Cho, H.C.;Kim, C.B.;Jeong, S.Y.;Kang, S.W.;Lee, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.196-206
    • /
    • 1995
  • Experimental investigations on heat and mass transfer characteristics in a vertical tube absorber have been carried out. Three different copper tubes with a length of 1.5m have been tested using LiBr solution and LiBr-$CaCl_2$ solution. The effects of solution flow rate, cooling water temperature, solution inlet temperature and evaporation temperature have been investigated in detail. It is found that heat transfer coefficient increases gradually with the increase of solution flow rate, but decreases rapidly for the flow rates less than 0.02kg/ms. The grooved tube generally shows better heat transfer performances than the smooth tube. LiBr solution shows almost no absorption capability for the cooling water temperatures over $40^{\circ}C$. LiBr-$CaCl_2$ gives less decreasing rate in absorption capability at these temperatures and the heat transfer coefficient becomes less dependent on the types of tubes in use. Considering heat and mass transfer rates, LiBr-$CaCl_2$ solution is found to be more suitable than LiBr solution for air cooled absorber, which operates at higher temperature than water cooled absorber.

  • PDF

Polymer Electrolyte Fuel Cell Simulation Using Simulink (Simulink를 이용한 고분자 전해질 연료전지 시스템 시뮬레이션)

  • Hwang, Nam-Sun;Lee, Ho-Jun;Ju, Byung-Su
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.109-112
    • /
    • 2007
  • In this paper, a mathematical modeling was developed to simulate 1kW class air cooled Polymer Electrolyte Membrane Fuel Cell(PEMFC) system. The proposed modeling was conducted under SIMULINK based environment. The model ing was developed based on the thermodynamic and chemical equilibrium. The objective is to design and implement the entire fuel cell system model ing including the system controller modeling. The fuel cell process and the control system modeling should have to be connected with each other simultaneously, therefore the two types of modeling influences each other when the system simulator run. The fuel cell modeling libraries are simulated using the SIMULINK under the thermodynamic and chemical equilibrium base. The PID controller application was designed and developed to test the process modeling and verify it. This the prototype development of the fuel cell system to design and test more complicate fuel cell systems, like the residential power generation system. The simulation results was compared to the real PEMFC system performance. We have achieved the reasonable accordance with the Lab test and the simulation results.

  • PDF

Magnetic Properties of Transition Metal-implanted ZnO Nanotips Grown on Sapphire and Quartz

  • Raley, Jeremy A.;Yeo, Yung-Kee;Hengehold, Robert L.;Ryu, Mee-Yi;Lu, Yicheng;Wu, Pan
    • Journal of Magnetics
    • /
    • v.13 no.1
    • /
    • pp.19-22
    • /
    • 2008
  • ZnO nanotips, grown on c-$Al_2O_3$ and quartz, were implanted variously with 200 keV Fe or Mn ions to a dose level of $5{\times}10^{16}cm^{-2}$. The magnetic properties of these samples were measured using a superconducting quantum interference device (SQUID) magnetometer. Fe-implanted ZnO nanotips grown on c-$Al_2O_3$ showed a coercive field width of 209 Oe and a remanent field of 12% of the saturation magnetization ($2.3{\times}10^{-5}emu$) at 300K for a sample annealed at $700^{\circ}C$ for 20 minutes. The field-cooled and the zero-field-cooled magnetization measurements also showed evidence of ferromagnetism in this sample with an estimated Curie temperature of around 350 K. The Mn-implanted ZnO nanotips grown on c-$Al_2O_3$ showed superparamagnetism resulting from the dominance of a spin-glass phase. The ZnO nanotips grown on quartz and implanted with Fe or Mn showed signs of ferromagnetism, but neither was consistent.

A Study on the Characteristics of Heating and Cooling Loads of Standard Chicken Houses in South Korea (국내 표준계사의 냉난방부하 특성 연구)

  • Kwon, Young-Cheol
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.235-243
    • /
    • 2019
  • In South Korea, millions of poultry have died due to repeated heat waves every year. The purpose of this study is to analyze the characteristics of heating and cooling loads of chicken houses in Korea and to present an effective insulation and ventilation measures to minimize the damage of poultry due to summer heat wave and to save energy in chicken houses in winter. The heating and cooling loads of standard chicken house were calculated. As a result of the calculation of maximum heating load based on the minimum ventilation rate in winter, the outdoor air temperature requiring heating was $6{\sim}7^{\circ}C$ to keep the indoor air temperature of chicken houses as $24^{\circ}C$. The peak cooling load of chicken houses was mostly taken by the heat generated by chickens and the heat gain due to ventilation. The heat gain through building envelopes was as small as neglectable. Most of chicken houses is usually cooled by gigantic forced ventilation in summer in Korea. When the chicken houses are cooled by electric cooling machine such as cooler or air conditioner, it is more effective to keep minimum ventilation rate to reduce the maximum cooling load. To lower the temperature of supplying water to cooling pad, it is recommended to use the underground water below 10 meters from the ground if there is abundant underground water.

Predictions of the Cooling Performance on an Air-Cooled EV Battery System According to the Air Flow Passage Shape (공기 유로 형상에 따른 공랭식 전기자동차 배터리 시스템의 냉각 성능 예측)

  • Jeong, Seok Hoon;Suh, Hyun Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.801-807
    • /
    • 2016
  • This paper aims to compare and study the cooling performance of a battery system in accordance with the inlet and outlet geometry of the air passage in an EV. The arrangement and the heat source of the battery module were fixed, and the inlet/outlet area and its geometry were varied with the analysis of the cooling performance. The results of this study provide suggestions for the air flow stream line inside of a battery, the velocity field, and the temperature distributions. It was confirmed that the volume flow rate of air should be over $400m^3/h$, in order to satisfy conditions under $50^{\circ}C$, which is the limit condition for stable operation. It was also revealed that the diffuser outlet geometry can improve the cooling performance of battery system.

Utilization of Blast Furnace Slag Quenched with Water as a Source of Silicate Fertilizer -II. Effect of Particle Size Distribution of Quenched Slag on Rice Yields (급랭광재(急冷鑛滓)의 비료화(肥料化)에 관(關)한 연구(硏究) -II. 수도(水稻)에 대한 급랭광재(急冷鑛滓)의 입도별(粒度別) 비효(肥效))

  • Lim, Dong-Kyu;Shin, Jae-Sung;Kim, Heung-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.1
    • /
    • pp.67-71
    • /
    • 1985
  • The objective of this study was to attest the feasibility of the utilization of the blast furnace slag, quenched with water as a source of silicate fertilizer. A pot experiment was conducted to evaluate the effect of quenched slag and its particle size distribution on rice plant growth over the corresponding air-cooled slag of milled commercial silicate fertilizer. The yields of rice were slightly higher in quenched slag than in the commericial air-cooled slag, however, no significant statistical difference was observed. The silica content of rice plants through the growing period was high in quenched slag in any tested particle sizes. This indicated that the quenched slag might release silica fastly in soil. On the other hand, the available silica content retained in soil was high in air cooled slag, which implied that the silica of air-cooled slag was low acting. The results suggested that the quenched slag may be potentially utilized as a source of silicate fertilizer.

  • PDF

Up-cycling of Air-cooled Ladle Furnace Slag : Environmental Risk Assessment and Mortar Compressive Strength Assesment of Binary and Ternary Blended Cement Using Air-cooled Ladle Furnace Slag (전기로 환원슬래그 Up-cycling : 환경위해성 평가 및 환원슬래그를 혼합하여 제조한 2성분계 및 3성분계 혼합시멘트 모르타르 압축강도 평가)

  • Cho, Han Sang;Mun, Young Bum;Moon, Won Sik;Park, Dae Cheol;Kim, Hyeong Cheol;Choi, Hyun Kook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.3
    • /
    • pp.159-164
    • /
    • 2015
  • This study investigated the environmental risk for up-cycling of air-cooled ladle furnace slag (LFS) and evaluated the mortar compressive strength of binary and ternary blended cements using LFS of 3, 5, 10 wt%. Based on the Soil Environment Conservation Act standard, there was no environmental risk of the up-cycling of LFS. Results of mortar compressive strength assesment showed that the compressive strength of two blended cements using LFS of lower than 5 wt% was about 1.1 times superior to that of un-substituted cement (ordinary portland cement, OPC); however the compressive strength of those with LFS of 10 wt% decreased with 10% compared with that of OPC.

Development of Concrete and Evaluation of Properties of Combined Steel making Slag Aggregates for Offshore Structure Production(II) (해양구조물 제조를 위한 제강슬래그 골재 조합별 물성평가 및 콘크리트 개발(II))

  • Jung, Won-Kyong;Kim, Hyun-Seok;Park, Dong-Cheon;Cho, Bong-Suk
    • Resources Recycling
    • /
    • v.25 no.2
    • /
    • pp.60-68
    • /
    • 2016
  • In this study, earlier analyzed tetrapod, one of an original group of offshore constructions studied for manufacturability of the concrete using the properties of steel making slag aggregate. steel making slag aggregate assessment, RCS and Blast Furnace Slag : the 20 mm air-cooled slag and combinations by 50 %, aggregate properties on the most appropriate for the properties of recycled aggregate concrete optimal mix, and assessing it. Properties of concrete used to be derived are judged as to bury the studies show that the hollowing-out of the RCS, plastic sole use is in the workability of the aggregate, plastic in the 20 mm slag also assessed to be a slight disadvantage, but RCS by mixing air-cooled coarse and 50 percent to 20 percent 50 mm. Thus, steel making slag marine structures using recycled aggregate, in rapid chilled slag or air-cooled slag. The sole use of the aggregate them than to combine the aggregate of concrete. After they satisfy the quality standard quality shall be used will aggregate steel making slag who meet the criteria concrete manufacturing in general or par with the aggregate of concrete. Performance was assessed as to develop a more than that.