• Title/Summary/Keyword: Air-conditioning system

Search Result 3,316, Processing Time 0.024 seconds

Study on the Development for Low Noise Indoor Unit Package Air-Conditioner (저소음 패키지형 공기조화기의 실내기 개발에 관한 연구)

  • 이재효;조성철;김태헌
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.518-523
    • /
    • 2003
  • The purpose of this study was to reduce the noise emitted from the package air-conditioner. The optimum design methods of the fans ware investigated experimentally through the analysis of noise problem caused by the conventional PAC system. New PAC system had decreased 6 dBA in overall noise level as compared with the conventional system by various technology.

An Experimental Study on the Characteristic of the Hot Water-Air Heating Generating System with a Solar Collector

  • Rokhman, Fatkhur;Hong, Boo-Pyo;You, Jin-Kwang;Yoon, Jung-In;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.360-363
    • /
    • 2012
  • A solar air heating has low efficiency compared with the solar water heating because the heat capacity of the air is small. The heat received by solar collector plate is not fully transferred to the air and then a part of them became the losses to the environment through conduction and convection process. This research is focusing on a design of better combined multi-purposed system suggested by us and aims to secure the more efficient solar energy utilization by combining the hot water and air heating system. The result in this paper has shown that the proposed design has better thermal performance than that of the common design. Furthermore, it was found that the performance of the combined air - water heating system increases the efficiency from 30% to 35%-40%.

  • PDF

Thermodynamic Modeling of Parallel Flow Condenser for Automotive Air Conditioning System (자동차용 평행류 응축기의 열성능 모델링)

  • 김일겸;고재윤;박상록;임장순
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.771-779
    • /
    • 2001
  • In this study, a simulation program has been developed to predict the performance of a parallel flow condenser of an air conditioning system for an automobile. The well-known correlations for he heat transfer rates and the pressure drops are included in this model. It is fond that the numerical model can predict the heat transfer rate and the pressure drop accurately. As the condensing pressure increases of fixed air inlet temperature, the heat transfer rate increases and the pressure drop decreases. The effect of he degree of subcooling on the performance of the condenser is greater than that of the degree of super-heating because the ratio of the area occupied by he tow-phase refrigerant the total area is significantly affected by he degree of subcooling rather than the degree of superheating.

  • PDF

Consideration of Appropriate Thermal Storage Time of Air-Conditioning System with Slab Thermal Storage in an Office Building by Use of Measurement Value (실측치를 통한 사무소건물 슬래브축열 공조시스템의 적정 축열시간 검토)

  • Jung, Jae-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.719-726
    • /
    • 2010
  • In this paper, the appropriate thermal storage time of an air-conditioning system with slab thermal storage was considered by use of summer measurement values. Two standards of heat extraction rate and criterion function were established as the standard that evaluates appropriateness. When heat extraction rate was a standard, zero hour and seven hours were obtained as appropriate thermal storage time, in the case of evaluation by energy consumption and running cost individually. Also, when criterion function was a standard, the difference between energy consumption and running cost was small, it was because the weight function to room air temperature deviation was much bigger than heat extraction rate.

Finite Element Analysis for the Swaging Process of an Automotive Air-conditioning Hose Assembly (자동차용 에어컨 호스 조립품의 스웨이징 공정에 대한 유한요소해석)

  • Baek, J.K.;Kim, B.T.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.54-60
    • /
    • 2010
  • The automotive air conditioning hose is used for connecting the components of air conditioner in a vehicle. The hose is usually manufactured by the swaging process to connect the rubber hose with the metal fitting at the end of the hose. The swaging process leads to various stress and strain configurations in the hose, which give a critical effect on the hose performance. In this paper, the deformation characteristics of an air-conditioning hose during the swaging process were analyzed using the nonlinear finite element method. Especially the rubber layers, which are contacted with the metal fittings, were divided with finer mesh density than the reinforcement braids to increase the solution accuracy. The material properties were obtained from experimental data, and the contact conditions were used in consideration of the real manufacturing process.

Prediction of Latent Heat Load Reduction Effect of the Dehumidifying Air-Conditioning System with Membrane (분리막 제습공조시스템의 잠열부하 저감효과 예측)

  • Jung, Yong-Ho;Park, Seong-Ryong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.1
    • /
    • pp.15-20
    • /
    • 2017
  • The summer climate is very hot and humid in Korea. The humidity is an important factor in determining thermal comfort. Recently, the research for dehumidification device development has been attempted to save energy that is required for the operation of the current dehumidifiers on the market. Existing dehumidification systems have disadvantages such as wasting energy to drive a compressor. Meanwhile, dehumidification systems with membranes can dehumidify humid air without increasing the dry bulb temperature so it doesn't have to consume cooling energy. In this paper, the cooling energy savings was studied when a dehumidification system was applied in a model building instead of a chiller. The sensible heat load was almost the same result, but the latent heat load was decreased by 38.9% and the total heat load was decreased by 8.5%. As a result, electric energy used to drive the compressor in a chiller was saved by applying a membrane air-conditioning system instead.

Exergy analysis of R717 high-efficiency OTEC power cycle for the efficiency and pressure drop in main components

  • Yoon, Jung-In;Son, Chang-Hyo;Yang, Dong-Il;Kim, Hyeon-Uk;Kim, Hyeon-Ju;Lee, Ho-Saeng
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.52-57
    • /
    • 2013
  • In this paper, an analysis on exergy efficiency of high-efficiency R717 OTEC power system for the efficiency and pressure drop in main components were investigated theoretically in order to optimize the design for the operating parameters of this system. The operating parameters considered in this study include turbine and pump efficiency, and pressure drop in a condenser and evaporator, respectively. As the turbine efficiency of R717 OTEC power system increases, the exergy efficiency of this system increases. But pressure drop in the evaporator of R717 OTEC power system increases, the exergy efficiency of this system decreases, respectively. And, in case of exergy efficiency of this OTEC system, the turbine efficiency and pressure drop in a condenser on R717 OTEC power system is the largest and the lowest among operation parameters, respectively.

The Characteristics of Cooling Performance on 7RT Ammonia Absorption System (7RT급 암모니아 흡수식 냉온수기의 냉방성능 특성)

  • Lee, Ho-Saeng;Jin, Byoung-Ju;Yoon, Jung-In;Hwang, Jun-Hyeon;Jin, Slm-Won;Kyung, Ick-Soo;Erickson, Donald C
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.8
    • /
    • pp.433-438
    • /
    • 2009
  • Experimental results for performance characteristics of small $NH_3$ absorption chiller/ heater are presented. The apparatus consists of 7RT water-cooled absorption system, solution pump, boiler, cooling tower and peripheral devices. The effect of experimental parameters, such as refrigerant mass flow rate, solution mass flow rate and cooling water temperature have been investigated in view of the system performance. The capacity of each heat exchanger increased as refrigerant mass flow rate increased in cooling mode. Also, a cooling capacity increased as a strong solution mass flow rate increased. The cooling and heating COP show 0.5, 1.5 regardless of refrigerant mass flow rate, respectively. The results focus on the evaluation for performance characteristics of system with respect to variation of refrigerant mass flow rate under standard design conditions.