• Title/Summary/Keyword: Air-borne Sound Insulation Tester

Search Result 2, Processing Time 0.017 seconds

Empirical Research for the Sound Insertion Loss of Panels (다중 페널의 차음성능에 대한 실험적 연구)

  • Ko, Kang-Ho;Kook, Hyung-Seok;Kim, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.198-203
    • /
    • 2001
  • This paper discusses an experimental method for measuring the insertion loss (IL) performance of a double panel that are used in vehicles. Instead of two adjacent reverberation chambers which are generally used to measure the transmission loss (TL) of the large sound isolation materials, air-borne sound insulation tester was utilized to determine the IL and articulation index (AI) of standardized deadening materials. In comparison to reverberation chamber method, air-borne sound insulation tester method is more space-saving, more time-saving and more simple to the automotive acoustics. From the empirical results, it is verified that the performance of deadening materials is closely connected with thickness of panels, type of filling material that is filled into a double panel, and area ratio of double panel.

  • PDF

Experimental Research for Air-borne Noise Reduction of a Multi-layered Insulation (다층 인슐레이션의 차음성능에 대한 실험적 연구)

  • 고강호;김영호;국형석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1185-1191
    • /
    • 2001
  • This paper discusses an experimental method for measuring the insertion loss (IL) performance of multi-layered insulations that are used in vehicles. Instead of two adjacent reverberation chambers which are generally used to measure the transmission loss (TL) of the large sound isolation materials, air-borne sound insulation tester was utilized to determine the IL and articulation index (AI) of standardized insulation materials. In comparison to reverberation chamber method, air-borne sound insulation tester method is more space-saving, more time-saving and more simple to the automotive acoustics. From the empirical results, it is found that the performances of insulation materials are closely connected with density of polyurethane foam, thickness of heavy layer, thickness of polyurethane foam, and application ratio to panel area.

  • PDF