• Title/Summary/Keyword: Air-Water Interface

Search Result 282, Processing Time 0.022 seconds

Three-dimensional Numerical Prediction on the Evolution of Nocturnal Thermal High (Tropical Night) in a Basin

  • Choi, Hyo;Kim, Jeong-Woo
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.25 no.1
    • /
    • pp.57-81
    • /
    • 1997
  • Numerical prediction of nocturnal thermal high in summer of the 1995 near Taegu city located in a basin has been carried out by a non-hydrostatic numerical model over complex terrain through one-way double nesting technique in the Z following coordinate system. Under the prevailing westerly winds, vertical turbulent fluxes of momentum and heat over mountains for daytime hours are quite strong with a large magnitude of more than $120W/\textrm{m}^2$, but a small one of $5W/\textrm{m}^2$ at the surface of the basin. Convective boundary layer (CBL) is developed with a thickness of about 600m over the ground in the lee side of Mt. Hyungje, and extends to the edge of inland at the interface of land sea in the east. Sensible heat flux near the surface of the top of the mountain is $50W/\textrm{m}^2$, but its flux in the basin is almost zero. Convergence of sensible heat flux occurs from the ground surface toward the atmosphere in the lower layer, causing the layer over the mountain to be warmed up, but no convergance of the flux over the basin results from the significant mixing of air within the CBL. As horizontal transport of sensible heat flux from the top of the mountain toward over the basin results in the continuous accumulation of heat with time, enhancing air temperature at the surface of the basin, especially Taegu city to be higher than $39.3^{\circ}C$. Since latent heat fluxes are $270W/\textrm{m}^2$ near the top of the mountain and $300W/\textrm{m}^2$ along the slope of the mountain and the basin, evaporation of water vapor from the surface of the basin is much higher than one from the mountain and then, horizontal transport of latent heat flux is from the basin toward the mountain, showing relative humidity of 65 to 75% over the mountain to be much greater than 50% to 55% in the basin. At night, sensible heat fluxes have negative values of $-120W/\textrm{m}^2$ along the slope near the top of the mountain and $-50W/\textrm{m}^2$ at the surface of the basin, which indicate gain of heat from the lower atmosphere. Nighttime radiative cooling produces a shallow nocturnal surface inversion layer with a thickness of about 100m, which is much lower than common surface inversion layer, and lifts extremely heated air masses for daytime hours, namely, a warm pool of $34^{\circ}C$ to be isolated over the ground surface in the basin. As heat transfer from the warm pool in the lower atmosphere toward the ground of the basin occurs, the air near the surface of the basin does not much cool down, resulting in the persistence of high temperature at night, called nocturnal thermal high or tropical night. High relative humidity of 75% is found at the surface of the basin under the moderate wind, while slightly low relative humidity of 60% is along the eastern slope of the high mountain, due to adiabatic heating by the srong downslope wind. Air temperature near the surface of the basin with high moisture in the evening does not get lower than that during the day and the high temperature produces nocturnal warming situation.

  • PDF

Surface Composition and Molecular Diffusion on the Stability of Foams Formed from Protein/Surfactant Mixtures (단백질/계면활성제 혼합계에서 기포안정성에 대한 계면조성과 분자확산)

  • Park, Sun-Yeong;Kim, Myung-Soo;Jeong, Noh-Hee;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.158-166
    • /
    • 2000
  • A conductimetric study of foam formed from mixture of the protein, ${\beta}-lactoglobulin$, and the nonioinc surfactant, SML, revealed that their stability was reduced at concentrations of SML in the range $3{\sim}10mM$. The interaction of SML with ${\beta}-lactoglobulin$ was investigated by fluorimetry and a dissociation constant of $0.2{\mu}M$ was calculated for the complex. Surface tension studies confirmed the presence of interaction between the two components and provided evidence for the progressive displacement of ${\beta}-lactogloblin$ from the air/water interface with increasing SML concentration. Experiments using air-suspended microscopic thin liquid films revealed transitions in the chainage characteristics and thickness of the film at SML concentrations below that which resulted in destabilization of the foam. However, measurements of surface mobility of fluorescent-labeled ${\beta}-lactoglobulin$ by a photobleaching method identified that a transition to a mobile system occurred at a SML concentration which correlated with the onset of instability in the disperse phase. The results would indicate that maintenance of the viscoelastic properties of the surface is paramount importance in determining the stability of interfaces comprising mixtures of protein and surfactant.

Influence of cement thickness on resin-zirconia microtensile bond strength

  • Lee, Tae-Hoon;Ahn, Jin-Soo;Shim, June-Sung;Han, Chong-Hyun;Kim, Sun-Jai
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.3
    • /
    • pp.119-125
    • /
    • 2011
  • PURPOSE. The aim of this study was to evaluate the influence of resin cement thickness on the microtensile bond strength between zirconium-oxide ceramic and resin cement. MATERIALS AND METHODS. Thirty-two freshly extracted molars were transversely sectioned at the deep dentin level and bonded to air-abraded zirconium oxide ceramic disks. The specimens were divided into 8 groups based on the experimental conditions (cement type: Rely X UniCem or Panavia F 2.0, cement thickness: 40 or 160 ${\mu}m$, storage: thermocycled or not). They were cut into microbeams and stored in $37^{\circ}C$ distilled water for 24 h. Microbeams of non-thermocycled specimens were submitted to a microtensile test, whereas those of thermocycled groups were thermally cycled for 18,000 times immediately before the microtensile test. Three-way ANOVA and Sheffe's post hoc tests were used for statistical analysis (${\alpha}$=95%). RESULTS. All failures occurred at the resin-zirconia interface. Thermocycled groups showed lower microtensile bond strength than non-thermocycled groups (P<.001). Differences in cement thickness did not influence the resin-zirconia microtensile bond strength given the same resin cement or storage conditions (P>.05). The number of adhesive failures increased after thermocycling in all experimental conditions. No cohesive failure was observed in any experimental group. CONCLUSION. When resin cements of adhesive monomers are applied over air-abraded zirconia restorations, the degree of fit does not influence the resin-zirconia microtensile bond strength.

Correlation between Oxidation State and Electron Blocking Performance of Tungsten Oxide Interlayer in Organic Solar Cell

  • Lee, Ji-Seon;Jang, In-Hyuk;Park, Nam-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.217-217
    • /
    • 2012
  • Solution-processed tungsten oxide thin film with thickness of about 30 nm is prepared from ammonium tungstate. This layer is introduced into the interface between the poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) layer and the ITO electrode to be used as an electron blocking layer. The annealed tungsten oxide thin films at $150^{\circ}C$ and $300^{\circ}C$ show amorphous phase, while the $400^{\circ}C$ -annealed tungsten oxide film shows crystalline phase. At $150^{\circ}C$ annealing temperature, the conversion efficiency is significantly improved from 0.71% to 1.42% as the condition is changed from vacuum to air atmosphere, which is related to oxidation state of tungsten in amorphous phase. For the air annealing condition, the conversion efficiency is further increased from 1.42% to 2.01% as the temperature is increased from $150^{\circ}C$ to $300^{\circ}C$, which is mainly due to the removal of the chemisorbed water. However, a slight deterioration in photovoltaic performance is observed when the temperature is increased to $400^{\circ}C$, which is ascribed to poor electron blocking ability due to the formation of crystalline phase. It is concluded that $W^{6+}$ oxidation state and amorphous nature in tungsten oxide interlayer is essential for blocking electron effectively from the active layer to the ITO electrode.

  • PDF

Development of Measuring Method for Bridge Scour and Water Level Using Temperature Difference Between Medium Interfaces (매질 경계면의 온도 변화를 이용한 교량 세굴 및 수위 측정방법 개발)

  • Joo, Bong-Chul;Park, Ki-Tae;You, Young-Jun;Hwang, Yoon-Koog
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.126-133
    • /
    • 2014
  • The main source of bridge destruction is due to scour. The bridge scour is the result of erosive action of flowing water taking away ground materials from near the abutment or pier. Furthermore, the water level must be also monitored whiling flooding, because it dangers not only the stability of bridge itself, but the safety of bridge users. This study is intended to develop a new measuring system for bridge scour by overcoming the current limitation of scour measurement technique. This measuring system is confirmed its excellence and validity through this study. The newly developed measuring system finds the distance between the water surface and the ground surface by detecting temperature difference along the abutment vertically. The measuring mechanism for monitoring the bridge scour and water level is based on identifying the temperature difference among mediums, including air, water and ground. In order to validate the new measuring system, the lab experiments and the field tests are conducted and compared. It has been confirmed that this system can effectively measure the bridge scour and the water level by analyzing the temperature distribution between mediums and the temperature variation over time.

The Investigation Regarding the Dose Change due to the Heterogeneity of Prostate Cancer Treatment with IMRT (전립선암의 세기조절 방사선치료 시 불균질부에 의한 선량변화에 관한 고찰)

  • Yoon, Il-Kyu;Park, Jang-Pil;Lee, Jae-Hee;Park, Heung-Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.2
    • /
    • pp.107-112
    • /
    • 2007
  • Purpose: The pelvic phantom was fabricated in the following purposes: (1) Dose verification of IMRT plan using Eclipse planning computer, (2) to study the interface effect at the interface between rectal wall and air. The TLD can be inserted in the pelvic phantom to confirm the dose distribution as well as uncertainty at the interface. Materials and Methods: A pelvic phantom with the dimension of 30 cm diameter, 20 cm height and 20 cm thickness was fabricated to investigate the dose at the rectal wall. The phantom was filled with water and has many features like bladder, rectum, and prostate and seminal vesicle (SV). The rectum is made of 3 cm-dimater plastic pipe, and it cab be blocked by using a plug, and film can be inserted around the rectal wall. The phantom was scanned with Philips Brillance scanner and various organs such as prostate, SV, and rectal wall, and bladder wall were delineated. The treatment parameters used in this study are the same as those used in the protocols in the SNUH. TLD chips are inserted to the phantom to evaluate the dose distribution to the rectal wall (to simulate high dose gradient region), bladder wall and SV (to simulate the high dose region) and 2 spots in anterior surface (to simulate the low dose region). The TLD readings are compared with those of the planning computer (ECLIPSE, Varian, USA). Results: The target TLD doses represented as the prostate and SV show excellent agreements with the doses from the RTP within +/-3%. The rectal wall doses measured at the rectal wall are different from the those of the RTP by -11%. This is in literatures called as an interface effect. The underdosages at the rectal wall is independent of 3 heterogeneity correction algorithm in the Eclipse RTP. Also the low dose regions s represented as surface in this study were within +/-1%. Conclusion: The RTP estimate the dosage very accurately withihn +/-3% in the high dose (SV, or prostate) and low dose region (surface). However, the dosage at the rectal wall differed by as much as 11% (In literatures, the underdosage of 9$\sim$15% were reported). This range of errors occurs at the interface, for example, at the interface between lung and chest wall, or vocal cord. This interface effect is very important in clinical situations, for example, to estimate the NTCP (normal tissue complication probability) and to estimate the limitations of the current RTP system. Monte-carlo-based RTP will handle this issue correctly.

  • PDF

Monolayer Characteristics of Bilayer Forming Phosphate Amphiphiles (이분자막 형성능을 가지는 인산형 양친매성 화합물의 단분자막 특성)

  • ;Kunitake, T.
    • Membrane Journal
    • /
    • v.5 no.2
    • /
    • pp.89-96
    • /
    • 1995
  • The monolayer characteristics of phosphate amphiphiles with azobenzene at air/water interface were studied by the measurment of $\pi-A$ curves and absorption spectra. Immediately after being spread on the water surface, these amphiphiles having strong intermolecular hydrogen bonding interactions showed the typical absorption spectra which resulted from domain formation. But the aggregated domains could be controlled by changing the subphase conditions (adding bulky salt and rasing pH). Addition of metal ions in subphase changes the molecular orientation of monolayer. As the metal ion charge increases ($1\leq2$ < 3 < 4 valence), the absorption maximum (310nm) of the amphiphile with azobenzene shifts to a longer wavelength (350nm) which means that the orientation of the amphiphile is tilted. These results suggest that the molecular orientation, and furthermore the aggregation state of monolayer can be possibly controlled by the interaction of metal ions with different charge types.

  • PDF

An Estimation of the New Production in the Southern East Sea Using Helium Isotopes

  • Kim, Kyung-Ryul;Hahm, Do-Shik
    • Journal of the korean society of oceanography
    • /
    • v.36 no.1
    • /
    • pp.19-26
    • /
    • 2001
  • The biological pump is one of the important pumping mechanisms absorbing CO$_2$ from the atmosphere into the ocean and can be quantified by estimating new production. New production in the open ocean mostly depends on the supply of nitrate from the water below the mixed layer. While nitrate is affected by many biological processes, the helium isotope ($^3$He) is inert and has very simple physical properties. Using the $^3$He flux and the relation between $^3$He and NO${_3}\;{^-}$- within the thermocline, the nitrate flux supporting new production was estimated in the southern East Sea. The average ${\delta}^3$He within the mixed layer was -14$%_o$ and -l5.4$%_o$ in the winter and autumn, respectively. Through the year excess $^3$He occurs in the mixed layer except for a slight depletion of -17$%_o$ in summer. The $^3$He flux of 13$%_o$md$^{-1}$ associated with the concentration gradient at the air-sea interface was calculated from the product of the piston velocity and the excess $^3$He. Tritium decay within the mixed layer could support only 2$%_o$md$^{-1}$ of the flux. Thus, the remaining 11$%_o$md^{-1}$ could be attributed to the flux of tritiugenic $^3$He from the water below the mixed layer. Nitrate and $^3$He were positively correlated within the thermocline layer with the slope of 0.21 ${\mu}$mol kg$^{-1}$ $%_o\;^{-1}$. The annual nitrate flux estimated from the upward flux of $^3$He and the NO$_{3}\;{^-}$-$^3$He relation was 0.8${\pm}$0.2 mol(N) m$^{-2}$yr$^{-1}$. This flux corresponds to an annual new production of 64 g(C) m$^{-2}$yr$^{-1}$, which is consistent with that in the north-west Pacific.

  • PDF

Characteristics of GHGs Emissions from Wastewater Treatment Process of Dairy Industry (유제품 가공산업의 폐수처리시설로부터 발생되는 온실가스 배출 특성)

  • Kim, Ji-Hye;Oh, Minhee;Kim, Ji-Hyo;Kang, Seong-Min;Jeong, Jae-Heon;Sa, Jae-Hwan;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.7 no.2
    • /
    • pp.103-110
    • /
    • 2016
  • In this study, we researched the characteristics of $CH_4$ and $N_2O$ emission of the wastewater treatment (WWT) process in the dairy industry. For flux measurements at the air-water interface, a floating dynamic flow-through chamber was used above the water surface. $CH_4$ and $N_2O$ concentration from the WWT process was measured by NDIR (Non-Dispersive Infrared) Analyser. In the study, $CH_4$ and $N_2O$ fluxes results showed a distinct difference for each WWT process. 60% of the GHG emissions which was the highest percentage were from the equalization tank. Reactor tank was second with 27% of the total emissions from the WWT. Aeration tank was third with 12% of the total emissions. The tendency was that the more the wastewater was treated, the less GHGs were emitted. $CH_4$ and $N_2O$ showed the same tendency. This indicates that the concentrations and properties of wastewater could affect the tendency.

Prediction of Resistance and Planing Attitude for Prismatic Planing Hull using OpenFOAM (OpenFOAM을 이용한 주형체 활주선의 저항 및 항주자세 추정)

  • Shi, XiangYu;Zhang, Yang;Yum, Deuk-joon
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.313-321
    • /
    • 2019
  • The prediction of the hydrodynamic performance of a planing hull vessel is an important and challenging topic for computational fluid dynamic (CFD) applications to naval hydrodynamics. In this paper, the resistance and planing attitude analysis for a Fridsma hull, which is a prismatic planing hull, in still water are numerically studied using OpenFOAM. OpenFOAM is an open source code package based on C++ libraries and the finite volume method (FVM) for the discretization of the RANS equation. The volume of fluid method (VOF) is used to capture the water-air interface and the SST ${\kappa}-{\omega}$ model is used for the turbulence simulation. The overset mesh method is used to capture the large motion of the hull at higher speeds. Before the extensive analysis, uncertainty analyses using various time steps and grid sizes were performed for one ship speed case of Fn = 1.19. The results of the present study are compared with those of a model test, other CFD research, and Savitsky's empirical formula. The results of the present study, following the trend of other CFD results, slightly over predict the resistance and under predict the sinkage and, more significantly, the trim.