• Title/Summary/Keyword: Air-Oil Cooling

Search Result 123, Processing Time 0.024 seconds

Optimum Machining Condition of Die Steel In The Oil-mist Condition (오일미스트 조건에서의 금형강의 최적절삭조건)

  • Kim Sang-Min;Kim Joon-Hyun;Kim Joo-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.59-65
    • /
    • 2006
  • The purposes of using cutting fluid during cutting have been cooling, lubricating, chip washing and anti-corroding. However, the present manufacturing industry restricts the use of cutting fluid because cutting fluid contains poisonous substances which are harmful to the human body. Therefore environmentally conscious machining and technology have more important position in machining process because cutting fluids have significant influence on the environment in milling process. In this study, environmentally conscious machining can be obtained by the way of selecting the optimum machinig conditon using the design of experiment. Cutting using oil-mist showed better cutting characteristics than dry, air and fluid cutting with respect to by cutting force, tool wear and surface roughness. Also, the optimum machining condition for cutting using oil-mist could be selected through Taguchi method.

An Experimental Study on the Measurement of Water Content in an Lubricating Oil by Implementing a Dew-point Condensation Sensor (이슬점 응축 현상을 이용한 오일 내 수분함량 측정에 관한 실험적 연구)

  • Kong Hosung;Yoon Eui-Sung;Han Hung-Gu;Kim Hak Yeul
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.130-136
    • /
    • 2004
  • Presence of water in the lubricating oils could be one of the first indicators of potentially expensive and possibly catastrophic failure of the machine as it may cause displace the oil films to prevent the lubrication function of the oil or chemically react with many oil additives resulting in the oil degradation. In order to detect water content quantitatively in lubricating oils many methods and sensors has been developed. Among these, capacitive sensors including sensitive layer, whose dielectric factor changes according to the water content absorbed in the layer, are proposed mainly in the market. But these sensors are not sensitive to a high water content. Besides, the absorbing layer soils in time. In this work, an evaporation of water moisture from oil into air volume above lubricant surface and condensation of water vapor at a cooling surface was used to measure water content quantitatively in an lubricating oil. Laboratory test results of a prototype sensor were presented. Test results showed that the proposed method could be avaliable to measure a low levels of oil moisture.

  • PDF

Prediction of Martensite Fraction in the Sintering Hardening Process of Ni/Mo Alloy Powder (FLC-4608) Using the Finite Element Method (Ni/Mo 합금분말(FLC-4608)의 소결경화 공정에서 유한요소법을 이용한 마르텐사이트 분율의 예측)

  • Park, Hyo Wook;Joo, Soo-Hyun;Lee, Eon Sik;Kwon, Ki Hyuk;Kim, Hyong Seop
    • Journal of Powder Materials
    • /
    • v.22 no.1
    • /
    • pp.10-14
    • /
    • 2015
  • In recent years, industrial demands for superior mechanical properties of powder metallurgy steel components with low cost are rapidly growing. Sinter hardening that combines sintering and heat treatment in continuous one step is cost-effective. The cooling rate during the sinter hardening process dominates material microstructures, which finally determine the mechanical properties of the parts. This research establishes a numerical model of the relation between various cooling rates and microstructures in a sinter hardenable material. The evolution of a martensitic phase in the treated microstructure during end quench tests using various cooling media of water, oil, and air is predicted from the cooling rate, which is influenced by cooling conditions, using the finite element method simulations. The effects of the cooling condition on the microstructure of the sinter hardening material are found. The obtained limiting size of the sinter hardening part is helpful to design complicate shaped components.

NUMERICAL STUDY ON THE COOLANT FLOW AND HEAT TRANSFER IN THE CYLINDER HEAD ASSEMBLY OF AN INTERNAL COMBUSTION ENGINE (내연기관 실린더 헤드 조립체 내부의 냉각수 유동 및 열전달에 관한 연구)

  • Suh, Y.K.;Heo, S.G.;Kim, B.H.
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.9-17
    • /
    • 2009
  • In this study we investigated the characteristics of fluid flow and heat transfer within a coolant passage in the cylinder head assembly of an internal combustion engine by using a commercial CFD code, CFX The complex coolant passage of the cylinder head assembly was modelled by suitable choice of a grid system and careful attention was paid in the construction of meshes near the walls where significant cooling occurs. To treat the simultaneous heating and cooling of the combustion walls we invented a methodology allowing a heat source within the solid wall and the convective cooling at the interface between the solid and the fluid. We managed to reproduce the experimental results by adjusting parameters appropriately. We have found that high temperature was concentrated at the surface of the cylinder jacket. It turned out that the effect of oil cooling from the piston head was unexpectedly significant. On the other hand the effect of cooling from the ambient air is almost negligible. The CFD method proposed in this study is believed to be useful in the early stage of the design of the engine-cooling system.

Cooling System for Power Transformer Using Weighting Function (하중함수를 이용한 전력용 변압기 냉각 시스템)

  • Cho, Do-Hyeoun
    • 전자공학회논문지 IE
    • /
    • v.49 no.2
    • /
    • pp.40-45
    • /
    • 2012
  • In this paper, cooling system of power transformers is proposed for temperature optimized control. We predict the peak temperature of power transformer coils using load factors and construct a cooling system using weighting function. For the optimized temperature control for power transformer, a correlation function based on the load factor of a load current and the each temperatures for winding coils, for air and for oil is presented to predict the winding-coil peak temperature. Also, the results controlled by applying the power transformer is presented.

Characterization of Hardenability and Mechanical Properties of B-Bearing Microalloyed Steels for Cold Forging (붕소함유 냉간단조용 비조질강의 경화능 및 기계적 특성평가)

  • Park H. G.;Nam N. G.;Choi H. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.395-399
    • /
    • 2004
  • Four microalloyed steels containing B were investigated in terms of hardenability, mechanical properties and microstructure depending upon the cooling rates in order to develop the steel grade for the cold forged fasners. The alloy with the largest DI value among 4 alloys, which contains $0.12\%\;C,\;1.54\%\;Mn,\;0.65\%\;Cr,\;0.11\%V,\;0.040\%Ti\;and\;0.0033\%B$, showed the larest shift to the right hand side in the TTT diagram, implying the wide allowable cooling rate range subsequent to hot rolling in long bar processing, Mechanical tests indicated that yield strength are dependent upon the DI value in water quenched specimens but other properties showed almost the same values. In the same grade of steel, the increase in cooling rates causes the decrease in elongation but the increase in strength, reduction of area and Charpy impact values. Microstructural examination in steel grade with the larest DI values revealed martensitic structure In the water quenched state, a mixture of martensite and bainite in the oil quenched, and ferrite + pearlite in the air cooled and the forced air cooled but the latter showed finer microstructure.

  • PDF

An Experimental Study on Oil Effect of CO2 in Heat Pump Outdoor Heat Exchanger (CO2용 실외열교환기의 오일 영향에 따른 성능변화에 대한 실험적 연구)

  • Lee, Jin-Gwan;Chang, Young-Soo;Kim, Seo-Young;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.4
    • /
    • pp.243-250
    • /
    • 2011
  • In order to investigate the effects of PAG oil concentration on heat transfer performance and pressure drop during gas cooling process of $CO_2$, the experiments on fin-tube heat exchanger of $CO_2$ heat pump were performed. The experimental apparatus consists of a gas cooler, a heater, a chiller, a mass flow meter, a pump and measurement system. Experiments were conducted in various experimental conditions, which were inlet temperature($110^{\circ}C$), mass flow rates (50, 55, 60, 65, 70 g/s) and PAG oil concentration(0 to 2.6 wt%). Heat transfer rate decreased with the increase of the oil concentration and the decrease of inlet pressure. And pressure drop increased with the increase of the oil concentration and mass flow rate of refrigerant. The COP reduction by deterioration of gas cooler performance with oil concentration was analyzed. When inlet pressure of gas cooler is 100 bar, the COP reduction was estimated by 6% under 1 wt% of oil concentration.

A Numerical Study of the Effects of Land Characteristics on the Air Cooling (지표면 특성에 따른 대기 냉각 효과에 관한 수치적 연구)

  • An, Jae-Ho;Kim, Tae-Wan;Lee, Sang-Eun
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.4
    • /
    • pp.264-271
    • /
    • 2004
  • A three-dimensional numerical mesoscale model by Pielke's estimation (University of Virginia Mesoscale Model, UVMM) was applied to investigate the effects of land characteristics including land-humidity, land-roughness and land-albedo on some micro-climatic coefficients and the air cooling capacity. The results indicated that land-characteristics exposed a significant effect on air cooling. Air cooling effects between in urban and agricultural areas were compared and the effects were much higher in agricultural area. Air cooling effects of weed species were different and when converted into economic values by diesel oil price the effects were ranged from 411 to 816 Won/plant.

Development of Heating and Cooling System with Heat Pump for Nutrient Solution Bed In Greenhouse (열펌프를 이용한 양액베드 냉난방시스템 개발)

  • Kang, Geum-Chun;Kim, Yeong-Jung;Yu, Yeong-Seon;Baek, Lee
    • Journal of Biosystems Engineering
    • /
    • v.27 no.6
    • /
    • pp.565-572
    • /
    • 2002
  • In order to control the root-zone temperature of greenhouse crops in the hydroponics at hot and cold season, heat pump system for cooling and heating was built and tested in this work. The system was air-to-water type and vapour compression type. The heating and cooling mode was selected by the four way valve. Capacity of the compressor was 3.75㎾ and heat transfer area of the evaporator and the condenser were 3.05㎡ and 0.6㎡, respectively. According to the performance test, it could supply heat of 42,360 to 64,372kJ/h depending on the water circulation rate of 600 to 1,500ℓ/h, respectively, when indoor air temperature was 10∼20$\^{C}$. COP of heat pump system was 3.0 to 4.0 in the heating mode. But, COP of the cooling mode was 1.3 to 2.1 at indoor temperature of 20∼35$\^{C}$. The feasibility test in the greenhouse the developed heating and cooling system was installed, showed that the heating cost of the developed system was only about 13% of that of the conventional heating system. The heating cost of the developed system was 367won/day(electric consumption 9.7㎾h/day), while that of the conventional system was 2,803won/day(oil consumption 7.7ℓ/day) at the same heating mode.

Test Results of Refrigerant R152a in a Mobile Air-Conditioning System

  • Shin, Jeong-Sub;Park, Won-Gu;Kim, Man-Hoe
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.2
    • /
    • pp.44-50
    • /
    • 2008
  • This study presents test results of a mobile air-conditioning system using a potential alternative refrigerant, R152a. A series of performance tests have been carried out and cycle characteristics such as cooling capacity, energy efficiency ratio, suction and discharge pressures, and temperatures are presented, compared to those for the baseline R134a system. Tests were conducted with evaporation temperature of $5^{\circ}C$, condensation temperature of $45^{\circ}C$, subcooling temperature of $5^{\circ}C$, superheating temperature of $5^{\circ}C$, and compressor speed of 500-1500 rpm. The performance of R152a system with readjustment of an expansion valve showed better than those of R134a. The effect of oil on the pressure drop in the evaporator was also addressed.